scispace - formally typeset
Search or ask a question

Showing papers on "Urea cycle published in 2018"


Journal ArticleDOI
TL;DR: The involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer is reviewed and the value of therapies targeting the elevated activity of Arginase is discussed.
Abstract: The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle p...

244 citations


Journal ArticleDOI
TL;DR: The metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy are discussed and insight is provided into the metabolic advantages and therapeutic opportunities stemming from urea cycle enzyme perturbations in cancer.
Abstract: Cancer cells reprogramme metabolism to maximize the use of nitrogen and carbon for the anabolic synthesis of macromolecules that are required during tumour proliferation and growth. To achieve this aim, one strategy is to reduce catabolism and nitrogen disposal. The urea cycle (UC) in the liver is the main metabolic pathway to convert excess nitrogen into disposable urea. Outside the liver, UC enzymes are differentially expressed, enabling the use of nitrogen for the synthesis of UC intermediates that are required to accommodate cellular needs. Interestingly, the expression of UC enzymes is altered in cancer, revealing a revolutionary mechanism to maximize nitrogen incorporation into biomass. In this Review, we discuss the metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy.

170 citations



Journal ArticleDOI
TL;DR: It is shown that fat accumulation in the liver produces a reversible reduction in the function of the enzymes that are involved in detoxification of ammonia, which is toxic in patients with fatty liver disease.

108 citations


Journal ArticleDOI
TL;DR: The reduced metabolite levels observed may represent a time of vulnerability to hormone related health issues such as PMS and PMDD, in the setting of a healthy, rhythmic state and may form the basis of novel nutrition strategies for women.
Abstract: The menstrual cycle is an essential life rhythm governed by interacting levels of progesterone, estradiol, follicular stimulating, and luteinizing hormones. To study metabolic changes, biofluids were collected at four timepoints in the menstrual cycle from 34 healthy, premenopausal women. Serum hormones, urinary luteinizing hormone and self-reported menstrual cycle timing were used for a 5-phase cycle classification. Plasma and urine were analyzed using LC-MS and GC-MS for metabolomics and lipidomics; serum for clinical chemistries; and plasma for B vitamins using HPLC-FLD. Of 397 metabolites and micronutrients tested, 208 were significantly (p < 0.05) changed and 71 reached the FDR 0.20 threshold showing rhythmicity in neurotransmitter precursors, glutathione metabolism, the urea cycle, 4-pyridoxic acid, and 25-OH vitamin D. In total, 39 amino acids and derivatives and 18 lipid species decreased (FDR < 0.20) in the luteal phase, possibly indicative of an anabolic state during the progesterone peak and recovery during menstruation and the follicular phase. The reduced metabolite levels observed may represent a time of vulnerability to hormone related health issues such as PMS and PMDD, in the setting of a healthy, rhythmic state. These results provide a foundation for further research on cyclic differences in nutrient-related metabolites and may form the basis of novel nutrition strategies for women.

97 citations


Journal ArticleDOI
TL;DR: By integrating metabolomics, genomic, and transcriptomic data, it is determined that enzymes in multiple metabolic pathways are universally depleted in human renal cancer tumors, which are otherwise genetically heterogeneous.

67 citations


Journal ArticleDOI
TL;DR: It is shown that colorectal cancers (CRCs) display negligible expression of OTC and, in subset of cases, ASS1 proteins, and arginase antagonizes chemotherapeutic drugs oxaliplatin and 5-fluorouracil (5-FU), whereas ADI-PEG20 synergizes with oxali platin in ASS1-negative cell lines and appears to interact with 5- fluorourACil independently of ASS1 status.
Abstract: Tumors deficient in the urea cycle enzymes argininosuccinate synthase-1 (ASS1) and ornithine transcarbamylase (OTC) are unable to synthesize arginine and can be targeted using arginine-deprivation therapy. Here, we show that colorectal cancers (CRCs) display negligible expression of OTC and, in subset of cases, ASS1 proteins. CRC cells fail to grow in arginine-free medium and dietary arginine deprivation slows growth of cancer cells implanted into immunocompromised mice. Moreover, we report that clinically-formulated arginine-degrading enzymes are effective anticancer drugs in CRC. Pegylated arginine deiminase (ADI-PEG20), which degrades arginine to citrulline and ammonia, affects growth of ASS1-negative cells, whereas recombinant human arginase-1 (rhArg1peg5000), which degrades arginine into urea and ornithine, is effective against a broad spectrum of OTC-negative CRC cell lines. This reflects the inability of CRC cells to recycle citrulline and ornithine into the urea cycle. Finally, we show that arginase antagonizes chemotherapeutic drugs oxaliplatin and 5-fluorouracil (5-FU), whereas ADI-PEG20 synergizes with oxaliplatin in ASS1-negative cell lines and appears to interact with 5-fluorouracil independently of ASS1 status. Overall, we conclude that CRC is amenable to arginine-deprivation therapy, but we warrant caution when combining arginine deprivation with standard chemotherapy.

66 citations


Journal ArticleDOI
TL;DR: Considering the role of the gut microbiota and the physiological characteristics of the intestine, the removal of ammonia from the intestine by modulating the Gut microbiota would be an ideal approach to treat hyperammonemia.
Abstract: Ammonia is constantly produced as a metabolic waste from amino acid catabolism in mammals. Ammonia, the toxic waste metabolite, is resolved in the liver where the urea cycle converts free ammonia to urea. Liver malfunctions cause hyperammonemia that leads to central nervous system (CNS) dysfunctions, such as brain edema, convulsions, and coma. The current treatments for hyperammonemia, such as antibiotics or lactulose, are designed to decrease the intestinal production of ammonia and/or its absorption into the body and are not effective, besides being often accompanied by side effects. In recent years, increasing evidence has shown that modifications of the gut microbiota could be used to treat hyperammonemia. Considering the role of the gut microbiota and the physiological characteristics of the intestine, the removal of ammonia from the intestine by modulating the gut microbiota would be an ideal approach to treat hyperammonemia. In this review, we discuss the significance of hyperammonemia and its related diseases and the efficacy of the current management methods for hyperammonemia to understand the mechanism of ammonia transport in the human body. The possibility to use the gut microbiota as pharmabiotics to treat hyperammonemia and its related diseases is also explored.

66 citations


Journal ArticleDOI
TL;DR: The urea cycle disorders are a group of inherited biochemical diseases caused by a complete or partial deficiency of any one of the enzymes or transport proteins required to convert toxic ammonia into urea and to produce arginine and citrulline.

64 citations


Journal ArticleDOI
TL;DR: This review presents a detailed quantitative analysis of the major factors determining blood-NH3 homeostasis – the N metabolism of urea, NH3, and amino acids by the liver, gastrointestinal system, muscle, kidney, and brain – with the ultimate goal of creating a model that allows for prediction of blood- NH3 concentration.
Abstract: Increased blood ammonia (NH3) is an important causative factor in hepatic encephalopathy, and clinical treatment of hepatic encephalopathy is focused on lowering NH3. Ammonia is a central element in intraorgan nitrogen (N) transport, and modeling the factors that determine blood-NH3 concentration is complicated by the need to account for a variety of reactions carried out in multiple organs. This review presents a detailed quantitative analysis of the major factors determining blood-NH3 homeostasis - the N metabolism of urea, NH3, and amino acids by the liver, gastrointestinal system, muscle, kidney, and brain - with the ultimate goal of creating a model that allows for prediction of blood-NH3 concentration. Although enormous amounts of NH3 are produced during normal liver amino-acid metabolism, this NH3 is completely captured by the urea cycle and does not contribute to blood NH3. While some systemic NH3 derives from renal and muscle metabolism, the primary site of blood-NH3 production is the gastrointestinal tract, as evidenced by portal vein-NH3 concentrations that are about three times that of systemic blood. Three mechanisms, in order of quantitative importance, release NH3 in the gut: 1) hydrolysis of urea by bacterial urease, 2) bacterial protein deamination, and 3) intestinal mucosal glutamine metabolism. Although the colon is conventionally assumed to be the major site of gut-NH3 production, evidence is reviewed that indicates that the stomach (via Helicobacter pylori metabolism) and small intestine and may be of greater importance. In healthy subjects, most of this gut NH3 is removed by the liver before reaching the systemic circulation. Using a quantitative model, loss of this "first-pass metabolism" due to portal collateral circulation can account for the hyperammonemia observed in chronic liver disease, and there is usually no need to implicate hepatocyte malfunction. In contrast, in acute hepatic necrosis, hyperammonemia results from damaged hepatocytes. Although muscle-NH3 uptake is normally negligible, it can become important in severe hyperammonemia. The NH3-lowering actions of intestinal antibiotics (rifaximin) and lactulose are discussed in detail, with particular emphasis on the seeming lack of importance of the frequently emphasized acidifying action of lactulose in the colon.

46 citations


Journal ArticleDOI
TL;DR: Hepatic autophagy is an important mechanism for ammonia detoxification because of its support of urea synthesis, and its enhancement has potential for therapy of both primary and secondary causes of hyperammonemia.
Abstract: Ammonia is a potent neurotoxin that is detoxified mainly by the urea cycle in the liver. Hyperammonemia is a common complication of a wide variety of both inherited and acquired liver diseases. If not treated early and thoroughly, it results in encephalopathy and death. Here, we found that hepatic autophagy is critically involved in systemic ammonia homeostasis by providing key urea-cycle intermediates and ATP. Hepatic autophagy is triggered in vivo by hyperammonemia through an α-ketoglutarate-dependent inhibition of the mammalian target of rapamycin complex 1, and deficiency of autophagy impairs ammonia detoxification. In contrast, autophagy enhancement by means of hepatic gene transfer of the master regulator of autophagy transcription factor EB or treatments with the autophagy enhancers rapamycin and Tat-Beclin-1 increased ureagenesis and protected against hyperammonemia in a variety of acute and chronic hyperammonemia animal models, including acute liver failure and ornithine transcarbamylase deficiency, the most frequent urea-cycle disorder. In conclusion, hepatic autophagy is an important mechanism for ammonia detoxification because of its support of urea synthesis, and its enhancement has potential for therapy of both primary and secondary causes of hyperammonemia.

Journal ArticleDOI
TL;DR: It is shown that cerebral disease in argininosuccinic aciduria involves neuronal nitrosative/oxidative stress that is not induced by hyperammonaemia, and that it can be reversed using AAV-ASL directed to liver and brain in mice.
Abstract: Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.

Journal ArticleDOI
TL;DR: Cumulative exposure to the biomarkers included in the study proved to be highly sensitive indicators of neuropsychological outcomes, even when below the cut-off levels generally considered toxic.
Abstract: Urea cycle disorders often present as devastating metabolic conditions, resulting in high mortality and significant neuropsychological damage, despite treatment. The Urea Cycle Disorders Longitudinal Study is a natural history study that collects data from regular clinical follow-up and neuropsychological testing. This report examines links between biochemical markers (ammonia, glutamine, arginine, citrulline) and primary neuropsychological endpoints in three distal disorders, argininosuccinic acid synthetase deficiency (ASD or citrullinemia type I), argininosuccinic acid lyase deficiency (ASA or ALD), and arginase deficiency (ARGD). Laboratory results and test scores from neuropsychological evaluations were assessed in 145 study participants, ages 3 years and older, with ASD (n = 64), ASA (n = 65) and ARGD (n = 16). Mean full scale IQ was below the population mean of 100 ± 15 for all groups: (ASD = 79 ± 24; ASA = 71 ± 21; ARGD = 65 ± 19). The greatest deficits were noted in visual performance and motor skills for all groups. While ammonia levels remain prominent as prognostic biomarkers, other biomarkers may be equally valuable as correlates of neuropsychological functioning. Cumulative exposure to the biomarkers included in the study proved to be highly sensitive indicators of neuropsychological outcomes, even when below the cut-off levels generally considered toxic. Blood levels of biomarkers obtained on the day of neuropsychological evaluations were not correlated with measures of functioning for any disorder in any domain. The importance of cumulative exposure supports early identification and confirms the need for well-controlled management of all biochemical abnormalities (and not just ammonia) that occur in urea cycle disorders.

Journal ArticleDOI
TL;DR: Bioinformatic analyses combined with functional assays can be used to identify and authenticate pathogenic sequence variants in regulatory regions of the OTC gene, in other urea cycle disorders or other inborn errors of metabolism.
Abstract: The ornithine transcarbamylase (OTC) gene is on the X chromosome and its product catalyzes the formation of citrulline from ornithine and carbamylphosphate in the urea cycle. About 10%-15% of patients, clinically diagnosed with OTC deficiency (OTCD), lack identifiable mutations in the coding region or splice junctions of the OTC gene on routine molecular testing. We collected DNA from such patients via retrospective review and by prospective enrollment. In nine of 38 subjects (24%), we identified a sequence variant in the OTC regulatory regions. Eight subjects had unique sequence variants in the OTC promoter and one subject had a novel sequence variant in the OTC enhancer. All sequence variants affect positions that are highly conserved in mammalian OTC genes. Functional studies revealed reduced reporter gene expression with all sequence variants. Two sequence variants caused decreased binding of the HNF4 transcription factor to its mutated binding site. Bioinformatic analyses combined with functional assays can be used to identify and authenticate pathogenic sequence variants in regulatory regions of the OTC gene, in other urea cycle disorders or other inborn errors of metabolism.

Journal ArticleDOI
TL;DR: Krebs and Kornberg as discussed by the authors proposed a trinity of cycles: the ornithine cycle, the citric acid cycle, and the glyoxylate cycle.

Journal ArticleDOI
11 Dec 2018-Cells
TL;DR: In vivo investigation of metabolic signatures represents a novel and useful tool for getting deeper insights into iron-dependent regulatory circuits and for monitoring of patients with primary and secondary iron overload, and those ones receiving iron supplementation therapy.
Abstract: Iron is an essential co-factor for several metabolic processes, including the Krebs cycle and mitochondrial oxidative phosphorylation. Therefore, maintaining an appropriate iron balance is essential to ensure sufficient energy production and to avoid excessive reactive oxygen species formation. Iron overload impairs mitochondrial fitness; however, little is known about the associated metabolic changes. Here we aimed to characterize the metabolic signature triggered by dietary iron overload over time in a mouse model, where mice received either a standard or a high-iron diet. Metabolic profiling was assessed in blood, plasma and liver tissue. Peripheral blood was collected by means of volumetric absorptive microsampling (VAMS). Extracted blood and tissue metabolites were analyzed by liquid chromatography combined to high resolution mass spectrometry. Upon dietary iron loading we found increased glucose, aspartic acid and 2-/3-hydroxybutyric acid levels but low lactate and malate levels in peripheral blood and plasma, pointing to a re-programming of glucose homeostasis and the Krebs cycle. Further, iron loading resulted in the stimulation of the urea cycle in the liver. In addition, oxidative stress was enhanced in circulation and coincided with increased liver glutathione and systemic cysteine synthesis. Overall, iron supplementation affected several central metabolic circuits over time. Hence, in vivo investigation of metabolic signatures represents a novel and useful tool for getting deeper insights into iron-dependent regulatory circuits and for monitoring of patients with primary and secondary iron overload, and those ones receiving iron supplementation therapy.

Journal ArticleDOI
TL;DR: The evidence with the perspective of the L-hArg usage in the monogastric and human nutrition and its related health implications is reviewed.
Abstract: L-Homoarginine (hArg) ((2S)-amino-6-Carbamimidamidohexanoic acid) is a non-essential cationic amino acid that may be synthesised from the lysine catabolism or the transamination of its precursor (Arginine: Arg). These processes involve the use of the ornithine transcarbamoylase (OTC), an enzyme from the urea cycle or the arginine: glycine amidinotransferase (AGAT), an enzyme from the creatine biosynthesis pathway. These enzymes are tissue-specific, hence they synthesised L-hArg in animals and human organs such as the liver, kidneys, brains, and the small intestines. L-hArg plays some important roles in the pathophysiological conditions, endothelial functions, and the energy metabolic processes in different organs. These functions depend on the concentrations of the available LhArg in the body. These different concentrations of the L-hArg in the body are related to the different disease conditions such as the T2D mellitus, the cardiovascular and the cerebrovascular diseases, the chronic kidney diseases, the intrauterine growth restriction (IUGR) and the preeclampsia (PE) in pregnancy disorders, and even mortality. However, the applications of the L-hArg in both human and animal studies is in its juvenile stage, and the mechanism of action in this vital amino acid is not fully substantiated and requires more research attention. Hence, we review the evidence with the perspective of the LhArg usage in the monogastric and human nutrition and its related health implications.

Book ChapterDOI
01 Jan 2018
TL;DR: This chapter discusses hyperammonemia, metabolism of amino acids to active substances, formation of catecholamines, melanin, phenylalanine and tyrosine blockages, and diseases and catabolism of amino acid.
Abstract: Metabolism of amino acids. Hyperammonemia is the condition discussed. Other topics in this chapter are as follows: urea cycle, transamination, transamidation, deamination, amino acid racemization, l -amino acid decarboxylation, metabolism of amino acids to active substances, formation of catecholamines, melanin, phenylalanine and tyrosine blockages, and diseases and catabolism of amino acids. The chapter ends with a summary, a list of papers and books as suggested reading, summary multiple-choice questions, and a case-based problem.

Journal ArticleDOI
TL;DR: Urea cycle disorders should be contemplated in non-jaundiced patients with ALI or ALF, severe hyperammonemia and normal serum creatinine regardless of serum aminotransferase levels.

Journal ArticleDOI
TL;DR: It is found that central metabolic pathways are reprogrammed in the liver of Maf1 knockout mice to direct substrates toward energy generation and nucleotide synthesis, confirming key predictions of the futile RNA cycle hypothesis.
Abstract: As a master negative regulator of RNA polymerase (Pol) III, Maf1 modulates transcription in response to nutrients and stress to balance the production of highly abundant tRNAs, 5S rRNA, and other small noncoding RNAs with cell growth and maintenance. This regulation of Pol III transcription is important for energetic economy as mice lacking Maf1 are lean and resist weight gain on normal and high fat diets. The lean phenotype of Maf1 knockout (KO) mice is attributed in part to metabolic inefficiencies which increase the demand for cellular energy and elevate catabolic processes, including autophagy/lipophagy and lipolysis. A futile RNA cycle involving increased synthesis and turnover of Pol III transcripts has been proposed as an important driver of these changes. Here, using targeted metabolomics, we find changes in the liver of fed and fasted Maf1 KO mice consistent with the function of mammalian Maf1 as a chronic Pol III repressor. Differences in long-chain acylcarnitine levels suggest that energy demand is higher in the fed state of Maf1 KO mice versus the fasted state. Quantitative metabolite profiling supports increased activity in the TCA cycle, the pentose phosphate pathway, and the urea cycle and reveals changes in nucleotide levels and the creatine system. Metabolite profiling also confirms key predictions of the futile RNA cycle hypothesis by identifying changes in many metabolites involved in nucleotide synthesis and turnover. Thus, constitutively high levels of Pol III transcription in Maf1 KO mice reprogram central metabolic pathways and waste metabolic energy through a futile RNA cycle.

Journal ArticleDOI
TL;DR: These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.
Abstract: Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.

Journal ArticleDOI
TL;DR: A new role of urea cycle disruption in the pathogenesis of PAH is suggested and five novel potential biomarkers in the Urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine and two candidate biomarkers were found to be highly correlated with PAH.
Abstract: Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg− 1) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.

Journal ArticleDOI
TL;DR: With good treatment effects, Huang-Lian-Jie-Du-Decoction could regain the balance of the disturbed metabolic status common in the two cholestasis injuries, e.g., unbalanced redox system and disturbed gut flora.
Abstract: Huang-Lian-Jie-Du-Decoction, a traditional Chinese formula, has been reported to protect liver from various injuries. Two cholestasis models of rats induced by thioacetamide and by bile duct ligation were established and treated with Huang-Lian-Jie-Du-Decoction. Nuclear Magnetic Resonance-based urinary metabolic profiles were analyzed by orthogonal partial least squares discriminant analysis and univariate analysis to excavate differential metabolites associated with the injuries of the two models and the treatment effects of Huang-Lian-Jie-Du-Decoction. The two cholestatic models shared common metabolic features of excessive fatty acid oxidation, insufficient glutathione regeneration and disturbed gut flora, with specific characteristics of inhibited urea cycle and DNA damage in thioacetamide-intoxicated model, and perturbed Kreb's cycle and inhibited branched chain amino acid oxidation in bile duct ligation model. With good treatment effects, Huang-Lian-Jie-Du-Decoction could regain the balance of the disturbed metabolic status common in the two cholestasis injuries, e.g., unbalanced redox system and disturbed gut flora; and perturbed urea cycle in thioacetamide-intoxicated model and energy crisis (disturbed Kreb's cycle and oxidation of branched chain amino acid) in bile duct ligation model, respectively.

Journal ArticleDOI
TL;DR: In vitro studies and animal models of UCD suggest that, not only the accumulation of ammonia, but also of the other metabolites involved in each UCD may impair redox status, and studies appear to support the role of oxidative stress in pathologic mechanisms of U CD.

Journal ArticleDOI
29 Oct 2018
TL;DR: The biofilm matrix of MRSA-USA300 and the corresponding Tn mutants is PIA/PNAG-independent and are mainly composed of proteins and eDNA.
Abstract: In methicillin-sensitive Staphylococcus aureus (MSSA), the tricarboxylic acid (TCA) cycle is known to negatively regulate production of the major biofilm-matrix exopolysaccharide, PIA/PNAG. However, methicillin-resistant S. aureus (MRSA) produce a primarily proteinaceous biofilm matrix, and contribution of the TCA-cycle therein remains unclear. Utilizing USA300-JE2 Tn-mutants (NARSA) in genes encoding TCA- and urea cycle enzymes for transduction into a prolific biofilm-forming USA300 strain (UAS391-Erys), we studied the contribution of the TCA- and urea cycle and of proteins, eDNA and PIA/PNAG, to the matrix. Genes targeted in the urea cycle encoded argininosuccinate lyase and arginase (argH::Tn and rocF::Tn), and in the TCA-cycle encoded succinyl-CoA synthetase, succinate dehydrogenase, aconitase, isocitrate dehydrogenase, fumarate hydratase class II, and citrate synthase II (sucC::Tn, sdhA/B::Tn, acnA::Tn, icd::Tn, fumC::Tn and gltA::Tn). Biofilm formation was significantly decreased under no flow and flow conditions by argH::Tn, fumC::Tn, and sdhA/B::Tn (range OD492 0.374−0.667; integrated densities 2.065−4.875) compared to UAS391-EryS (OD492 0.814; integrated density 10.676) (p ≤ 0.008). Cellular and matrix stains, enzymatic treatment (Proteinase K, DNase I), and reverse-transcriptase PCR-based gene-expression analysis of fibronectin-binding proteins (fnbA/B) and the staphylococcal accessory regulator (sarA) on pre-formed UAS391-Erys and Tn-mutant biofilms showed: (i) < 1% PIA/PNAG in the proteinaceous/eDNA matrix; (ii) increased proteins under no flow and flow in the matrix of Tn mutant biofilms (on average 50 and 51 (±11)%) compared to UAS391-Erys (on average 22 and 25 (±4)%) (p < 0.001); and (iii) down- and up-regulation of fnbA/B and sarA, respectively, in Tn-mutants compared to UAS391-EryS (0.62-, 0.57-, and 2.23-fold on average). In conclusion, we show that the biofilm matrix of MRSA-USA300 and the corresponding Tn mutants is PIA/PNAG-independent and are mainly composed of proteins and eDNA. The primary impact of TCA-cycle inactivation was on the protein component of the biofilm matrix of MRSA-USA300.

Journal ArticleDOI
TL;DR: A codon-optimized human ASL gene packaged within adeno-associated virus serotype 8 (AAV8) as a vector for targeted delivery to the liver demonstrates that AAV8 gene therapy is a viable approach for the treatment of ASA.

Journal ArticleDOI
TL;DR: It is found that during hyperammonemia, ammonia-induced depletion of liver alpha-ketoglutarate and its consequent inhibition of the mechanistic target of rapamycin kinase complex 1 results in autophagy induction, which increases the efficiency of ammonia detoxification.
Abstract: Ammonia is a highly neurotoxic metabolite that is efficiently converted into urea or glutamine. During liver failure due to hepatocellular dysfunction or in inherited deficiencies of urea cycle enzymes, ammonia clearance is impaired resulting in systemic hyperammonemia and hepatic encephalopathy that can rapidly progress into coma and death if left untreated. Because available therapeutic options are often unsatisfactory, the development of effective therapies for hyperammonemia is highly needed. Here, we review our recent findings on the role of hepatic macroautophagy/autophagy in ammonia detoxification. We found that during hyperammonemia, ammonia-induced depletion of liver alpha-ketoglutarate and its consequent inhibition of the mechanistic target of rapamycin kinase complex 1 results in autophagy induction. Metabolite recycling induced by enhanced hepatic autophagy increases the efficiency of ammonia detoxification by furnishing key urea cycle intermediates and ATP, and stimulating ureagenesis. Moreover, autophagy enhancement by liver-directed gene transfer of the master regulator of autophagy TFEB (transcription factor EB) or treatments with the autophagy enhancers rapamycin and Tat-beclin 1 improve ammonia detoxification during hyperammonemia occurring as a consequence of either acquired or inherited diseases.

Journal ArticleDOI
10 Sep 2018-PLOS ONE
TL;DR: Intriguingly, specific and irreversible inhibition of ornithine aminotransferase (OAT) by 5-fluoromethylornithine rescues zebrafish from lethal concentrations of ammonium acetate and corrects hyperammonemia-induced biochemical alterations, suggesting OAT inhibition is a promising and effective therapeutic approach for preventing neurotoxicity and mortality in acute hyperam monemia.
Abstract: Hyperammonemia is the common biochemical hallmark of urea cycle disorders, activating neurotoxic pathways. If untreated, affected individuals have a high risk of irreversible brain damage and mortality. Here we show that acute hyperammonemia strongly enhances transamination-dependent formation of osmolytic glutamine and excitatory glutamate, thereby inducing neurotoxicity and death in ammoniotelic zebrafish larvae via synergistically acting overactivation of NMDA receptors and bioenergetic impairment induced by depletion of 2-oxoglutarate. Intriguingly, specific and irreversible inhibition of ornithine aminotransferase (OAT) by 5-fluoromethylornithine rescues zebrafish from lethal concentrations of ammonium acetate and corrects hyperammonemia-induced biochemical alterations. Thus, OAT inhibition is a promising and effective therapeutic approach for preventing neurotoxicity and mortality in acute hyperammonemia.

Journal ArticleDOI
TL;DR: A favorable safety profile was found with respect to catheter placement, intraportal liver cell infusion, and immunosuppression in children with severe UCDs and more than half of the children treated per protocol experienced metabolic stabilization and could be safely bridged to liver transplantation.
Abstract: Urea cycle disorders (UCDs) still have a poor prognosis despite several therapeutic advancements. As liver transplantation can provide a cure, liver cell therapy (LCT) might be a new therapeutic option in these patients. Twelve patients with severe UCDs were included in this prospective clinical trial. Patients received up to six infusions of cryopreserved human heterologous liver cells via a surgically placed catheter in the portal vein. Portal vein pressure, portal vein flow, and vital signs were monitored continuously. Calcineurin inhibitors and steroids were used for immunosuppression. In four patients, ureagenesis was determined with stable isotopes. Number and severity of hyperammonemic events and side effects of immunosuppression were analyzed during an observation period of up to 2 years. No study-related mortality was observed. The application catheter dislocated in two children. No significant side effects of catheter application or cell infusion were noted in the other ten patients. The overall incidence of infections did not differ significantly from a historical control group, and no specific side effects of immunosuppression were found. Seven patients were treated per protocol and could be analyzed for efficacy. Severe metabolic crises could be prevented in all of these patients, moderate crises in four of seven. Ureagenesis increased after cell infusion in all patients investigated. We found a favorable safety profile with respect to catheter placement, intraportal liver cell infusion, and immunosuppression. More than half of the children treated per protocol experienced metabolic stabilization and could be safely bridged to liver transplantation.

Journal ArticleDOI
TL;DR: All single reactions and overall equations leading to the metabolic interaction between ureagenesis and citric acid cycle to be incorporated into a two‐three lecture series about the interaction of urea cycle with other metabolic pathways are presented.