scispace - formally typeset
J

Jong H. Chow

Researcher at Australian National University

Publications -  255
Citations -  56305

Jong H. Chow is an academic researcher from Australian National University. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 77, co-authored 254 publications receiving 48175 citations. Previous affiliations of Jong H. Chow include Carleton College & University of Sydney.

Papers
More filters
Journal ArticleDOI

GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence

B. P. Abbott, +1116 more
TL;DR: For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity.
Journal ArticleDOI

GW170817: Measurements of Neutron Star Radii and Equation of State.

B. P. Abbott, +1238 more
TL;DR: This analysis expands upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars.
Journal ArticleDOI

Tests of general relativity with GW150914

B. P. Abbott, +979 more
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Journal ArticleDOI

GW170608: Observation of a 19 solar-mass binary black hole coalescence

B. P. Abbott, +1154 more
TL;DR: In this article, a GW signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13.5%.
Journal ArticleDOI

Characterization of the LIGO detectors during their sixth science run

J. Aasi, +887 more
TL;DR: In this paper, the authors review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of the detectors to a variety of astrophysical sources.