scispace - formally typeset
Search or ask a question
Institution

Brown University

EducationProvidence, Rhode Island, United States
About: Brown University is a education organization based out in Providence, Rhode Island, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 35778 authors who have published 90896 publications receiving 4471489 citations. The organization is also known as: brown.edu & Brown.


Papers
More filters
Journal ArticleDOI
TL;DR: A systematic nomenclature for this set of Graphene-Family Nanomaterials (GFNs) is proposed and specific materials properties relevant for biomolecular and cellular interactions are discussed and several unique modes of interaction between GFNs and nucleic acids, lipid bilayers, and conjugated small molecule drugs and dyes are discussed.
Abstract: Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. Related materials include few-layer-graphene (FLG), ultrathin graphite, graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanosheets (GNS). This review proposes a systematic nomenclature for this set of Graphene-Family Nanomaterials (GFNs) and discusses specific materials properties relevant for biomolecular and cellular interactions. We discuss several unique modes of interaction between GFNs and nucleic acids, lipid bilayers, and conjugated small molecule drugs and dyes. Some GFNs are produced as dry powders using thermal exfoliation, and in these cases, inhalation is a likely route of human exposure. Some GFNs have aerodynamic sizes that can lead to inhalation and substantial deposition in the human respiratory tract, which may impair lung defense and clearance leading to the formation of granulomas and lung fibrosis. The limited litera...

1,122 citations

Journal ArticleDOI
TL;DR: In this paper, the Navier-Stokes equations permit the presence of an externally imposed body force that may vary in space and time, and the velocity is used to iteratively determine the desired value.

1,119 citations

Journal ArticleDOI
TL;DR: It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time.
Abstract: Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time This model can also be extended to include the effect of clathrin coat The results seem to show broad agreement with experimental observations

1,119 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the relationship between product market competition and innovation and found a robust inverted-U relationship between competition and patenting, and developed an endogenousm growth model with step-by-step innovation that can deliver this inverted U pattern.
Abstract: This paper investigates the relationship between product market competition and innovation. It uses the radical policy reforms in the UK as instruments for changes in product market competition, and finds a robust inverted-U relationship between competition and patenting. It then develops an endogenousm growth model with step-by-step innovation that can deliver this inverted-U pattern. In this model, competition has an ambiguous effect on innovation. On the one hand, it discourages laggard firms from innovating, as it reduces their rents from catching up with the leaders in the same industry. On the other hand, it encourages neck-and-neck firms to innovate in order to escape competition with their rival. The inverted-U pattern results from the interplay between these two effects, together with the effect of competition on the equilibrium industry structure. The model generates two additional predictions: on the relationship between competition and the average technological distance between leaders and followers across industries; and on the relationship between the distance of an industry to its technological frontier and the steepness of the inverted-U. Both predictions are supported by the data.

1,114 citations

Journal ArticleDOI
01 Jun 2021
TL;DR: Some of the prevailing trends in embedding physics into machine learning are reviewed, some of the current capabilities and limitations are presented and diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems are discussed.
Abstract: Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.

1,114 citations


Authors

Showing all 36143 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Robert M. Califf1961561167961
Eric J. Topol1931373151025
Joan Massagué189408149951
Joseph Biederman1791012117440
Gonçalo R. Abecasis179595230323
James F. Sallis169825144836
Steven N. Blair165879132929
Charles M. Lieber165521132811
J. S. Lange1602083145919
Christopher J. O'Donnell159869126278
Charles M. Perou156573202951
David J. Mooney15669594172
Richard J. Davidson15660291414
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

95% related

Yale University
220.6K papers, 12.8M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Johns Hopkins University
249.2K papers, 14M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023126
2022591
20215,550
20205,321
20194,806
20184,462