scispace - formally typeset
Search or ask a question

Showing papers by "Brown University published in 2014"


Journal ArticleDOI
Keith A. Olive1, Kaustubh Agashe2, Claude Amsler3, Mario Antonelli  +222 moreInstitutions (107)
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations


Journal ArticleDOI
Adam J. Bass1, Vesteinn Thorsson2, Ilya Shmulevich2, Sheila Reynolds2  +254 moreInstitutions (32)
11 Sep 2014-Nature
TL;DR: A comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project is described and a molecular classification dividing gastric cancer into four subtypes is proposed.
Abstract: Gastric cancer was the world’s third leading cause of cancer mortality in 2012, responsible for 723,000 deaths1. The vast majority of gastric cancers are adenocarcinomas, which can be further subdivided into intestinal and diffuse types according to the Lauren classification2. An alternative system, proposed by the World Health Organization, divides gastric cancer into papillary, tubular, mucinous (colloid) and poorly cohesive carcinomas3. These classification systems have little clinical utility, making the development of robust classifiers that can guide patient therapy an urgent priority. The majority of gastric cancers are associated with infectious agents, including the bacterium Helicobacter pylori4 and Epstein–Barr virus (EBV). The distribution of histological subtypes of gastric cancer and the frequencies of H. pylori and EBV associated gastric cancer vary across the globe5. A small minority of gastric cancer cases are associated with germline mutation in E-cadherin (CDH1)6 or mismatch repair genes7 (Lynch syndrome), whereas sporadic mismatch repair-deficient gastric cancers have epigenetic silencing of MLH1 in the context of a CpG island methylator phenotype (CIMP)8. Molecular profiling of gastric cancer has been performed using gene expression or DNA sequencing9–12, but has not led to a clear biologic classification scheme. The goals of this study by The Cancer Genome Atlas (TCGA) were to develop a robust molecular classification of gastric cancer and to identify dysregulated pathways and candidate drivers of distinct classes of gastric cancer.

4,583 citations


Journal ArticleDOI
TL;DR: It is proposed that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease.
Abstract: In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD.

2,581 citations


Journal ArticleDOI
TL;DR: The International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.
Abstract: Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

2,028 citations


Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, S. Bedikian5, Ethan Bernard5, A. Bernstein6, Alexander Bolozdynya1, A. W. Bradley1, D. Byram7, Sidney Cahn5, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A. A. Chiller7, C. Chiller7, K. Clark1, T. Coffey1, A. Currie2, A. Curioni5, Steven Dazeley6, L. de Viveiros10, A. Dobi4, J. E. Y. Dobson11, E. M. Dragowsky1, E. Druszkiewicz12, B. N. Edwards5, C. H. Faham13, S. Fiorucci9, C. E. Flores14, R. J. Gaitskell9, V. M. Gehman13, C. Ghag15, K.R. Gibson1, Murdock Gilchriese13, C. R. Hall4, M. Hanhardt3, S. A. Hertel5, M. Horn5, D. Q. Huang9, M. Ihm16, R. G. Jacobsen16, L. Kastens5, K. Kazkaz6, R. Knoche4, S. Kyre8, R. L. Lander14, N. A. Larsen5, C. Lee1, David Leonard4, K. T. Lesko13, A. Lindote10, M.I. Lopes10, A. Lyashenko5, D.C. Malling9, R. L. Mannino17, Daniel McKinsey5, Dongming Mei7, J. Mock14, M. Moongweluwan12, J. A. Morad14, M. Morii18, A. St. J. Murphy11, C. Nehrkorn8, H. N. Nelson8, F. Neves10, James Nikkel5, R. A. Ott14, M. Pangilinan9, P. D. Parker5, E. K. Pease5, K. Pech1, P. Phelps1, L. Reichhart15, T. A. Shutt1, C. Silva10, W. Skulski12, C. Sofka17, V. N. Solovov10, P. Sorensen6, T.M. Stiegler17, K. O'Sullivan5, T. J. Sumner2, Robert Svoboda14, M. Sweany14, Matthew Szydagis14, D. J. Taylor, B. P. Tennyson5, D. R. Tiedt3, Mani Tripathi14, S. Uvarov14, J.R. Verbus9, N. Walsh14, R. C. Webb17, J. T. White17, D. White8, M. S. Witherell8, M. Wlasenko18, F.L.H. Wolfs12, M. Woods14, Chao Zhang7 
TL;DR: The first WIMP search data set is reported, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data, finding that the LUX data are in disagreement with low-mass W IMP signal interpretations of the results from several recent direct detection experiments.
Abstract: The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

1,962 citations



Journal ArticleDOI
TL;DR: Evidence is provided that theta band activities over the midfrontal cortex appear to reflect a common computation used for realizing the need for cognitive control, and frontal theta is a compelling candidate mechanism by which emergent processes, such as 'cognitive control', may be biophysically realized.

1,589 citations


Journal ArticleDOI
TL;DR: In this article, the most recent advance in the applications of 0D (nanoparticles), 1D(nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in lithium-ion batteries are summarized.
Abstract: There are growing concerns over the environmental, climate, and health impacts caused by using non-renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium-ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid-electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.

1,365 citations


Journal ArticleDOI
TL;DR: The mechanisms of tumour cell death that are induced by the most common thermoablative techniques are examined and the rapidly developing areas of research in the field are discussed, including combinatorial ablation and immunotherapy, synergy with conventional chemotherapy and radiation, and the development of a new ablation modality in irreversible electroporation.
Abstract: Minimally invasive thermal ablation of tumours has become common since the advent of modern imaging. From the ablation of small, unresectable tumours to experimental therapies, percutaneous radiofrequency ablation, microwave ablation, cryoablation and irreversible electroporation have an increasing role in the treatment of solid neoplasms. This Opinion article examines the mechanisms of tumour cell death that are induced by the most common thermoablative techniques and discusses the rapidly developing areas of research in the field, including combinatorial ablation and immunotherapy, synergy with conventional chemotherapy and radiation, and the development of a new ablation modality in irreversible electroporation.

1,354 citations


Journal ArticleDOI
TL;DR: In this article, a review of thermal transport at the nanoscale is presented, emphasizing developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field.
Abstract: A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interface...

1,307 citations


Journal ArticleDOI
14 Aug 2014-Cell
TL;DR: An integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types revealed a unified classification into 11 major subtypes, revealing several distinct cancer types found to converge into common subtypes.

Journal ArticleDOI
TL;DR: This review discusses how intracellular pathways and extracellular signals that regulate gene expression to induce EMT crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease.
Abstract: The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis.


Journal ArticleDOI
TL;DR: A new light-measurement strategy taking account of the complex photoreceptive inputs to these non-visual responses is proposed for use by researchers, and simple suggestions for artificial/architectural lighting are provided for regulatory authorities, lighting manufacturers, designers, and engineers.

Journal ArticleDOI
Patrick J. Keeling1, Patrick J. Keeling2, Fabien Burki2, Heather M. Wilcox3, Bassem Allam4, Eric E. Allen5, Linda A. Amaral-Zettler6, Linda A. Amaral-Zettler7, E. Virginia Armbrust8, John M. Archibald1, John M. Archibald9, Arvind K. Bharti10, Callum J. Bell10, Bank Beszteri11, Kay D. Bidle12, Connor Cameron10, Lisa Campbell13, David A. Caron14, Rose Ann Cattolico8, Jackie L. Collier4, Kathryn J. Coyne15, Simon K. Davy16, Phillipe Deschamps17, Sonya T. Dyhrman18, Bente Edvardsen19, Ruth D. Gates20, Christopher J. Gobler4, Spencer J. Greenwood21, Stephanie Guida10, Jennifer L. Jacobi10, Kjetill S. Jakobsen19, Erick R. James2, Bethany D. Jenkins22, Uwe John11, Matthew D. Johnson23, Andrew R. Juhl18, Anja Kamp24, Anja Kamp25, Laura A. Katz26, Ronald P. Kiene27, Alexander Kudryavtsev28, Alexander Kudryavtsev29, Brian S. Leander2, Senjie Lin30, Connie Lovejoy31, Denis H. Lynn2, Denis H. Lynn32, Adrian Marchetti33, George B. McManus30, Aurora M. Nedelcu34, Susanne Menden-Deuer22, Cristina Miceli35, Thomas Mock36, Marina Montresor37, Mary Ann Moran38, Shauna A. Murray39, Govind Nadathur40, Satoshi Nagai, Peter B. Ngam10, Brian Palenik5, Jan Pawlowski29, Giulio Petroni41, Gwenael Piganeau42, Matthew C. Posewitz43, Karin Rengefors44, Giovanna Romano37, Mary E. Rumpho30, Tatiana A. Rynearson22, Kelly B. Schilling10, Declan C. Schroeder, Alastair G. B. Simpson9, Alastair G. B. Simpson1, Claudio H. Slamovits1, Claudio H. Slamovits9, David Roy Smith45, G. Jason Smith46, Sarah R. Smith5, Heidi M. Sosik23, Peter Stief24, Edward C. Theriot47, Scott N. Twary48, Pooja E. Umale10, Daniel Vaulot49, Boris Wawrik50, Glen L. Wheeler51, William H. Wilson52, Yan Xu53, Adriana Zingone37, Alexandra Z. Worden3, Alexandra Z. Worden1 
Canadian Institute for Advanced Research1, University of British Columbia2, Monterey Bay Aquarium Research Institute3, Stony Brook University4, University of California, San Diego5, Marine Biological Laboratory6, Brown University7, University of Washington8, Dalhousie University9, National Center for Genome Resources10, Alfred Wegener Institute for Polar and Marine Research11, Rutgers University12, Texas A&M University13, University of Southern California14, University of Delaware15, Victoria University of Wellington16, University of Paris-Sud17, Columbia University18, University of Oslo19, University of Hawaii at Manoa20, University of Prince Edward Island21, University of Rhode Island22, Woods Hole Oceanographic Institution23, Max Planck Society24, Jacobs University Bremen25, Smith College26, University of South Alabama27, Saint Petersburg State University28, University of Geneva29, University of Connecticut30, Laval University31, University of Guelph32, University of North Carolina at Chapel Hill33, University of New Brunswick34, University of Camerino35, University of East Anglia36, Stazione Zoologica Anton Dohrn37, University of Georgia38, University of Technology, Sydney39, University of Puerto Rico40, University of Pisa41, Centre national de la recherche scientifique42, Colorado School of Mines43, Lund University44, University of Western Ontario45, California State University46, University of Texas at Austin47, Los Alamos National Laboratory48, Pierre-and-Marie-Curie University49, University of Oklahoma50, Plymouth Marine Laboratory51, Bigelow Laboratory For Ocean Sciences52, Princeton University53
TL;DR: In this paper, the authors describe a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans and their biology, evolution, and ecology.
Abstract: Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans.

Journal ArticleDOI
TL;DR: New space-based observations of chlorophyll fluorescence enable an accurate, global, and time-resolved measurement of crop photosynthesis, which is not possible from any other remote vegetation measurement, and indicates that SIF data can help improve global models for more accurate projections of agricultural productivity and climate impact on crop yields.
Abstract: Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

Journal ArticleDOI
24 Jan 2014-Science
TL;DR: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy.
Abstract: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

Journal ArticleDOI
TL;DR: Renal-artery stenting did not confer a significant benefit with respect to the prevention of clinical events when added to comprehensive, multifactorial medical therapy in people with atherosclerotic renal-arterY stenosis and hypertension or chronic kidney disease.
Abstract: BACKGROUND Atherosclerotic renal-artery stenosis is a common problem in the elderly. Despite two randomized trials that did not show a benefit of renal-artery stenting with respect to kidney function, the usefulness of stenting for the prevention of major adverse renal and cardiovascular events is uncertain. METHODS We randomly assigned 947 participants who had atherosclerotic renal-artery stenosis and either systolic hypertension while taking two or more antihypertensive drugs or chronic kidney disease to medical therapy plus renal-artery stenting or medical therapy alone. Participants were followed for the occurrence of adverse cardiovascular and renal events (a composite end point of death from cardiovascular or renal causes, myocardial infarction, stroke, hospitalization for congestive heart failure, progressive renal insufficiency, or the need for renal-replacement therapy). RESULTS Over a median follow-up period of 43 months (interquartile range, 31 to 55), the rate of the primary composite end point did not differ significantly between participants who underwent stenting in addition to receiving medical therapy and those who received medical therapy alone (35.1% and 35.8%, respectively; hazard ratio with stenting, 0.94; 95% confidence interval [CI], 0.76 to 1.17; P = 0.58). There were also no significant differences between the treatment groups in the rates of the individual components of the primary end point or in all-cause mortality. During follow-up, there was a consistent modest difference in systolic blood pressure favoring the stent group (−2.3 mm Hg; 95% CI, −4.4 to −0.2; P = 0.03). CONCLUSIONS Renal-artery stenting did not confer a significant benefit with respect to the prevention of clinical events when added to comprehensive, multifactorial medical therapy in people with atherosclerotic renal-artery stenosis and hypertension or chronic kidney disease. (Funded by the National Heart, Lung and Blood Institute and others; ClinicalTrials.gov number, NCT00081731.) abstr act

Journal ArticleDOI
TL;DR: A metaconstruct is proposed to capture experiences that reflect both individuals' ethnic background and their racialized experiences in a specific sociohistorical context and presents milestones in the development of ERI across developmental periods.
Abstract: Although ethnic and racial identity (ERI) are central to the normative development of youth of color, there have been few efforts to bring scholars together to discuss the theoretical complexities of these constructs and provide a synthesis of existing work. The Ethnic and Racial Identity in the 21st Century Study Group was assembled for this purpose. This article provides an overview of the interface of ERI with developmental and contextual issues across development, with an emphasis on adolescence and young adulthood. It proposes a metaconstruct to capture experiences that reflect both individuals’ ethnic background and their racialized experiences in a specific sociohistorical context. Finally, it presents milestones in the development of ERI across developmental periods.

Journal ArticleDOI
TL;DR: This communication shows that ultrathin Au nanowires (NWs) with dominant edge sites on their surface are active and selective for electrochemical reduction of CO2 to CO and are the most efficient nanocatalyst ever reported.
Abstract: In this communication, we show that ultrathin Au nanowires (NWs) with dominant edge sites on their surface are active and selective for electrochemical reduction of CO2 to CO. We first develop a facile seed-mediated growth method to synthesize these ultrathin (2 nm wide) Au NWs in high yield (95%) by reducing HAuCl4 in the presence of 2 nm Au nanoparticles (NPs). These NWs catalyze CO2 reduction to CO in aqueous 0.5 M KHCO3 at an onset potential of −0.2 V (vs reversible hydrogen electrode). At −0.35 V, the reduction Faradaic efficiency (FE) reaches 94% (mass activity 1.84 A/g Au) and stays at this level for 6 h without any noticeable activity change. Density functional theory (DFT) calculations suggest that the excellent catalytic performance of these Au NWs is attributed both to their high mass density of reactive edge sites (≥16%) and to the weak CO binding on these sites. These ultrathin Au NWs are the most efficient nanocatalyst ever reported for electrochemical reduction of CO2 to CO.

Journal ArticleDOI
TL;DR: A way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off by exploiting the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation.
Abstract: The strength-ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength-ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems.

Journal ArticleDOI
Paul M. Thompson1, Jason L. Stein2, Sarah E. Medland3, Derrek P. Hibar1  +329 moreInstitutions (96)
TL;DR: The ENIGMA Consortium has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected.
Abstract: The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.

Journal ArticleDOI
TL;DR: The observation of an all-boron fullerene-like cage cluster at B40(-) with an extremely low electron-binding energy is reported, by photoelectron spectroscopy, and theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40 (-) with two adjacent hexagonal holes is slightly more stable than the fullerenes structure.
Abstract: Main-group analogues to fullerene-C60 have been predicted theoretically many times. Now, B40− has been observed using photoelectron spectroscopy and, with its neutral analogue, B40, confirmed computationally. In contrast to fullerene-C60, the all-boron fullerene (or borospherene) features triangles, hexagons and heptagons, bonded uniformly by delocalized σ and π bonds over the cage surface.

Journal ArticleDOI
TL;DR: It is shown experimentally and theoretically that B36 is a highly stable quasiplanar boron cluster with a central hexagonal hole, providing the first experimental evidence that single-atom layerboron sheets with hexagonal vacancies are potentially viable.
Abstract: Unlike carbon, boron is unable to form graphene-type structures, although variants with hexagonal holes have been suggested. Here the authors provide experimental evidence for the viability of such atom-thin boron sheets on the basis of a hexagonal vacancy discovered in a 36-atom planar boron cluster.

Journal ArticleDOI
TL;DR: Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed.
Abstract: According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.

Journal ArticleDOI
S. Chatrchyan, Khachatryan1, Albert M. Sirunyan, Armen Tumasyan  +2384 moreInstitutions (207)
26 May 2014
TL;DR: In this paper, a description of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices is provided.
Abstract: A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tt events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p_T > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p_T = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p_T, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.

Journal ArticleDOI
Goodarz Danaei1, Yuan Lu1, Gitanjali M Singh1, Emily Carnahan2  +337 moreInstitutions (9)
TL;DR: In this paper, the authors used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys and obtained relative risks for the eff ects of risk factors on cause-specifi c mortality from meta-analyses of large prospective studies.


Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the strategies to produce furfural, new approaches and numerous possibilities to utilize it in industrial and laboratory sector for the production of fuel additives and value-added chemicals are discussed.
Abstract: As our high dependence on the supply of diminishing fossil fuel reserves raise great concerns in its environmental, political and economic consequences, utilization of renewable biomass as an alternative resource has become increasingly important. Along this background, furfural as a building block, offers a promising, rich platform for lignocellulosic biofuels and value-added chemicals. These include 2-methylfuran and 2-methyltetrahydrofuran, furfuryl alcohol, tetrahydrofurfuryl alcohol, furan, tetrahydrofuran as well as various cyclo-products (e.g., cyclopentanol, cyclopentanone). The various production routes started from furfural to various fuel additives and chemicals are critically reviewed, and the current technologies for efficient production are identified. Their potential applications as well as the fuel properties of these products are discussed. Challenges and areas that need improvement are also highlighted in the corresponding area. In short, we conduct a comprehensive review of the strategies to produce furfural, new approaches and numerous possibilities to utilize furfural in industrial and laboratory sector for the production of fuel additives and value-added chemicals.

Journal ArticleDOI
24 Jan 2014-Science
TL;DR: Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover, indicating that clay mineral formation on Mars extended beyond Noachian time.
Abstract: Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of similar to 10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both similar to 13.2 and similar to 10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.