scispace - formally typeset
Search or ask a question
Institution

Harbin Engineering University

EducationHarbin, Heilongjiang, China
About: Harbin Engineering University is a education organization based out in Harbin, Heilongjiang, China. It is known for research contribution in the topics: Control theory & Computer science. The organization has 31149 authors who have published 27940 publications receiving 276787 citations. The organization is also known as: HEU.


Papers
More filters
Journal ArticleDOI
W.Y. Duan1, Yuntao Han1, Huang Limin1, B.B. Zhao1, M.H. Wang 
TL;DR: A hybrid empirical model decomposition (EMD) support vector regression (SVR) model designated as EMD-SVR for nonlinear and non-stationary wave prediction is proposed in this paper.

100 citations

Journal ArticleDOI
TL;DR: A model for forecasting the motion of a floating platform with satisfactory forecasting accuracy is presented and the proposed chaotic efficient bat algorithm, based on the chaotic, niche search, and evolution mechanisms, is used to optimize the parameters of the hybrid kernel-based support vector regression model.

100 citations

Journal ArticleDOI
TL;DR: In this article, an environment-friendly chemical conversion coating for Mg-Li alloy was obtained by using a phytic acid solution, and the influencing factors of PHYtic acid conversion coating were discussed through orthogonal experiments and the optimum processing parameters were confirmed.

99 citations

Journal ArticleDOI
TL;DR: In this paper, a facile microwave (MW) reflux method was used to obtain pure hexagonal NaYF4:Yb3+,Ln3+ (Ln 3+ = Er3+, Tm3+, Ho3+) crystals.
Abstract: Pure hexagonal NaYF4:Yb3+,Ln3+ (Ln3+ = Er3+, Tm3+, Ho3+) crystals were obtained for the first time through a facile microwave (MW) reflux method at relatively low temperature (160 °C) and atmospheric pressure within only 50 min. By controllably increasing the NH4F content in the ethylene glycol (EG) solvent, the phase of as-prepared NaYF4:Yb3+,Ln3+ gradually transforms from cubic to hexagonal. Correspondingly, the up-conversion (UC) emission intensities of hexagonal NaYF4:Yb3+,Ln3+ (Ln3+ = Er3+, Tm3+, Ho3+) are increased by 10–12 times compared to those of the cubic phase. A possible growth mechanism for the phase transformation under these MW conditions has been proposed. Moreover, for the first time, we introduced Bi3+ ion into β-NaYF4:20%Yb3+,2%Ln3+ crystals. As expected, the UC emission of β-NaYF4:Yb3+,Ln3+,Bi3+ are about 10–40 times higher than those of Bi3+ free samples. It is found that tri-doping of Bi3+ doesn't change the basic emission of Ln3+ ions. XRD results gives evidence that tri-doping of Bi3+ ions can tailor the local crystal field and dissociate the Yb3+ and Ln3+ ion clusters, which is the main reason for the UC enhancement. This designed MW reflux method for the synthesis of β-NaYF4:20%Yb3+,2%Ln3+ can be applied to prepare other rare earth fluorides. The markedly enhanced UC luminescence through Bi3+ doping also provides an effective way to gain very bright UC emission.

99 citations

Journal ArticleDOI
TL;DR: In this article, the removal of uranium ions from aqueous solution with a novel magnetic composite adsorbent, calcined magnetic layered double hydroxide/hydroxyapatite (CMLH), was reported.

99 citations


Authors

Showing all 31363 results

NameH-indexPapersCitations
Peng Shi137137165195
Lei Zhang130231286950
Yang Liu1292506122380
Tao Zhang123277283866
Wei Zhang104291164923
Wei Liu102292765228
Feng Yan101104141556
Lianzhou Wang9559631438
Xiaodong Xu94112250817
Zhiguo Yuan9363328645
Rong Wang9095032172
Jun Lin8869930426
Yufeng Zheng8779731425
Taihong Wang8427925945
Mao-Sheng Cao8131424046
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Northeastern University
58.1K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022408
20212,476
20202,484
20192,402
20182,173