scispace - formally typeset
Search or ask a question
Institution

Harbin Engineering University

EducationHarbin, Heilongjiang, China
About: Harbin Engineering University is a education organization based out in Harbin, Heilongjiang, China. It is known for research contribution in the topics: Control theory & Computer science. The organization has 31149 authors who have published 27940 publications receiving 276787 citations. The organization is also known as: HEU.


Papers
More filters
Journal ArticleDOI
TL;DR: This review highlights the most recent research progress on silica-based controlled drug delivery systems, including pure mesoporous silica sustained-release systems, magnetism and/or luminescence functionalized mesoporus silica systems which integrate targeting and tracking abilities of drug molecules.
Abstract: In the past decade, non-invasive and biocompatible mesoporous silica materials as efficient drug delivery systems have attracted special attention. Great progress in structure control and functionalization (magnetism and luminescence) design has been achieved for biotechnological and biomedical applications. This review highlights the most recent research progress on silica-based controlled drug delivery systems, including: (i) pure mesoporous silica sustained-release systems, (ii) magnetism and/or luminescence functionalized mesoporous silica systems which integrate targeting and tracking abilities of drug molecules, and (iii) stimuli-responsive controlled release systems which are able to respond to environmental changes, such as pH, redox potential, temperature, photoirradiation, and biomolecules. Although encouraging and potential developments have been achieved, design and mass production of novel multifunctional carriers, some practical biological application, such as biodistribution, the acute and chronic toxicities, long-term stability, circulation properties and targeting efficacy in vivo are still challenging.

1,233 citations

Journal ArticleDOI
TL;DR: Synthesis, Luminescent Properties, and Biomedical Applications Shili Gai,‡ Chunxia Li,† Piaoping Yang,*,‡ and Jun Lin*,† † state Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.
Abstract: Synthesis, Luminescent Properties, and Biomedical Applications Shili Gai,†,‡ Chunxia Li,† Piaoping Yang,*,‡ and Jun Lin*,† †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China ‡Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China

1,210 citations

Journal ArticleDOI
TL;DR: Graphene has attracted great attention in various application areas, such as energy-storage materials, polymer composites, liquid crystal devices, and mechanical resonators.
Abstract: Owing to its unique electrical, thermal, and mechanical properties, graphene has attracted great attention in various application areas, such as energy-storage materials, [ 1–3 ] free-standing paper-like materials, [ 4–6 ] polymer composites, [ 7–9 ] liquid crystal devices, [ 10 ] and mechanical resonators. [ 11 , 12 ] Approaches for preparing graphene include micromechanical cleavage, [ 11 , 13 , 14 ]

1,203 citations

Journal ArticleDOI
Yiju Li1, Guiling Wang1, Tong Wei1, Zhuangjun Fan1, Peng Yan1 
TL;DR: In this paper, a facile one-step pyrolysis and activation synthesis method was utilized to convert a common biomass of willow catkin into interconnected porous carbon nanosheets (PCNs), and then followed by effective nitrogen and sulfur co-doping.

1,035 citations

Journal ArticleDOI
TL;DR: A critical review of the factors influencing the volumetric performance of carbon materials from a structural design point of view and an in-depth summary of various promising approaches used to make significant research breakthroughs in recent years.
Abstract: Volumetric performance, a much more reliable and precise parameter for evaluating the charge-storage capacity of supercapacitors compared with gravimetric performance, has aroused more and more interest in recent years owing to the rapid development of miniaturized, portable and wearable electronic devices as well as electric vehicles. Various carbon materials are widely used as electrode materials in supercapacitors. However, their intrinsically low specific capacitance and relatively low bulk density lead to a relatively low volumetric performance, significantly limiting their future application. This critical review points out the crucial importance of volumetric performance and reviews recent achievements of high volumetric performances obtained through the rational design and development of novel carbon-based materials. Particular emphasis is focused on discussing the factors influencing the volumetric performance of carbon materials from a structural design point of view. We then make an in-depth summary of various promising approaches used to make significant research breakthroughs in recent years. Current challenges, future research directions and opportunities in this fascinating field of supercapacitors with high gravimetric and volumetric performances are also discussed.

984 citations


Authors

Showing all 31363 results

NameH-indexPapersCitations
Peng Shi137137165195
Lei Zhang130231286950
Yang Liu1292506122380
Tao Zhang123277283866
Wei Zhang104291164923
Wei Liu102292765228
Feng Yan101104141556
Lianzhou Wang9559631438
Xiaodong Xu94112250817
Zhiguo Yuan9363328645
Rong Wang9095032172
Jun Lin8869930426
Yufeng Zheng8779731425
Taihong Wang8427925945
Mao-Sheng Cao8131424046
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Northeastern University
58.1K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022408
20212,476
20202,484
20192,402
20182,173