scispace - formally typeset
Search or ask a question
Institution

Katholieke Universiteit Leuven

EducationLeuven, Belgium
About: Katholieke Universiteit Leuven is a education organization based out in Leuven, Belgium. It is known for research contribution in the topics: Population & Context (language use). The organization has 61109 authors who have published 176584 publications receiving 6210872 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Scientists working on the response of bacteria to antibiotics define antibiotic persistence and provide practical guidance on how to study bacterial persister cells, and provide a guide to measuring persistence.
Abstract: Increasing concerns about the rising rates of antibiotic therapy failure and advances in single-cell analyses have inspired a surge of research into antibiotic persistence. Bacterial persister cells represent a subpopulation of cells that can survive intensive antibiotic treatment without being resistant. Several approaches have emerged to define and measure persistence, and it is now time to agree on the basic definition of persistence and its relation to the other mechanisms by which bacteria survive exposure to bactericidal antibiotic treatments, such as antibiotic resistance, heteroresistance or tolerance. In this Consensus Statement, we provide definitions of persistence phenomena, distinguish between triggered and spontaneous persistence and provide a guide to measuring persistence. Antibiotic persistence is not only an interesting example of non-genetic single-cell heterogeneity, it may also have a role in the failure of antibiotic treatments. Therefore, it is our hope that the guidelines outlined in this article will pave the way for better characterization of antibiotic persistence and for understanding its relevance to clinical outcomes.

659 citations

Journal ArticleDOI
TL;DR: This work has shown that the plant defense system is regulated through a complex network of various signaling cascades that regulates a multicomponent defense response.

659 citations

Journal ArticleDOI
TL;DR: A major issue that remains to be resolved is the precise connection between the cAMP–PKA pathway and other nutrient‐regulated components involved in the control of growth and of phenotypic characteristics correlated with growth, such as the Sch9 and Yak1 protein kinases.
Abstract: The cAMP-protein kinase A (PKA) pathway in the yeast Saccharomyces cerevisiae plays a major role in the control of metabolism, stress resistance and proliferation, in particular in connection with the available nutrient conditions. Extensive information has been obtained on the core section of the pathway, i.e. Cdc25, Ras, adenylate cyclase, PKA, and on components interacting directly with this core section, such as the Ira proteins, Cap/Srv2 and the two cAMP phosphodiesterases. Recent work has now started to reveal upstream regulatory components and downstream targets of the pathway. A G-protein-coupled receptor system (Gpr1-Gpa2) acts upstream of adenylate cyclase and is required for glucose activation of cAMP synthesis in concert with a glucose phosphorylation-dependent mechanism. Although a genuine signalling role for the Ras proteins remains unclear, they appear to mediate at least part of the potent stimulation of cAMP synthesis by intracellular acidification. Recently, several new targets of the PKA pathway have been discovered. These include the Msn2 and Msn4 transcription factors mediating part of the induction of STRE-controlled genes by a variety of stress conditions, the Rim15 protein kinase involved in stationary phase induction of a similar set of genes and the Pde1 low-affinity cAMP phosphodiesterase, which specifically controls agonist-induced cAMP signalling. A major issue that remains to be resolved is the precise connection between the cAMP-PKA pathway and other nutrient-regulated components involved in the control of growth and of phenotypic characteristics correlated with growth, such as the Sch9 and Yak1 protein kinases. Cln3 appears to play a crucial role in the connection between the availability of certain nutrients and Cdc28 kinase activity, but it remains to be clarified which nutrient-controlled pathways control Cln3 levels.

659 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel approach for multiperson tracking-by-detection in a particle filtering framework that detects and tracks a large number of dynamically moving people in complex scenes with occlusions, requires no camera or ground plane calibration, and only makes use of information from the past.
Abstract: In this paper, we address the problem of automatically detecting and tracking a variable number of persons in complex scenes using a monocular, potentially moving, uncalibrated camera. We propose a novel approach for multiperson tracking-by-detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence of pedestrian detectors and online-trained, instance-specific classifiers as a graded observation model. Thus, generic object category knowledge is complemented by instance-specific information. The main contribution of this paper is to explore how these unreliable information sources can be used for robust multiperson tracking. The algorithm detects and tracks a large number of dynamically moving people in complex scenes with occlusions, does not rely on background modeling, requires no camera or ground plane calibration, and only makes use of information from the past. Hence, it imposes very few restrictions and is suitable for online applications. Our experiments show that the method yields good tracking performance in a large variety of highly dynamic scenarios, such as typical surveillance videos, webcam footage, or sports sequences. We demonstrate that our algorithm outperforms other methods that rely on additional information. Furthermore, we analyze the influence of different algorithm components on the robustness.

658 citations

Journal ArticleDOI
TL;DR: Interestingly, inhibition of either autophagy or NADPH oxidase prevents intracellular chromatin decondensation, which is essential for NETosis and NET formation, and results in cell death characterized by hallmarks of apoptosis, indicating that apoptosis might function as a backup program forNETosis when autophagous activity is prevented.
Abstract: Neutrophil extracellular traps (NETs) are extracellular chromatin structures that can trap and degrade microbes. They arise from neutrophils that have activated a cell death program called NET cell death, or NETosis. Activation of NETosis has been shown to involve NADPH oxidase activity, disintegration of the nuclear envelope and most granule membranes, decondensation of nuclear chromatin and formation of NETs. We report that in phorbol myristate acetate (PMA)-stimulated neutrophils, intracellular chromatin decondensation and NET formation follow autophagy and superoxide production, both of which are required to mediate PMA-induced NETosis and occur independently of each other. Neutrophils from patients with chronic granulomatous disease, which lack NADPH oxidase activity, still exhibit PMA-induced autophagy. Conversely, PMA-induced NADPH oxidase activity is not affected by pharmacological inhibition of autophagy. Interestingly, inhibition of either autophagy or NADPH oxidase prevents intracellular chromatin decondensation, which is essential for NETosis and NET formation, and results in cell death characterized by hallmarks of apoptosis. These results indicate that apoptosis might function as a backup program for NETosis when autophagy or NADPH oxidase activity is prevented.

658 citations


Authors

Showing all 61602 results

NameH-indexPapersCitations
Eugene Braunwald2301711264576
Joseph L. Goldstein207556149527
Rakesh K. Jain2001467177727
Stefan Schreiber1781233138528
Masayuki Yamamoto1711576123028
Jun Wang1661093141621
David R. Jacobs1651262113892
Klaus Müllen1642125140748
Peter Carmeliet164844122918
Hua Zhang1631503116769
William J. Sandborn1621317108564
Elliott M. Antman161716179462
Tobin J. Marks1591621111604
Ian A. Wilson15897198221
Johan Auwerx15865395779
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

93% related

Stanford University
320.3K papers, 21.8M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023307
2022857
202111,007
202010,541
20199,719
20189,532