scispace - formally typeset
Search or ask a question
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topics: Population & Thin film. The organization has 44161 authors who have published 101744 publications receiving 3456774 citations. The organization is also known as: NCSU & North Carolina State University at Raleigh.


Papers
More filters
Journal ArticleDOI
TL;DR: Direct measurements of valley relaxation dynamics in single layer MoS2 are reported by using ultrafast transient absorption spectroscopy, showing that strong Coulomb interactions significantly impact valley population dynamics and biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors.
Abstract: Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.

437 citations

Journal ArticleDOI
TL;DR: The seminested PCR test was able to detect and discriminate B. gibsoni (Asian genotype), B.Canis subsp.
Abstract: Canine babesiosis has recently been recognized as an emerging infectious disease of dogs in North America. We sought to develop a seminested PCR to detect and differentiate Babesia gibsoni (Asian genotype), B. canis subsp. vogeli, B. canis subsp. canis, and B. canis subsp. rossi DNA in canine blood samples. An outer primer pair was designed to amplify an ∼340-bp fragment of the 18S rRNA genes from B. gibsoni (Asian genotype), B. canis subsp. vogeli, B. canis subsp. rossi, and B. canis subsp. canis but not mammalian DNA. Forward primers were designed that would specifically amplify a smaller fragment from each organism in a seminested PCR. The practical limit of detection was 50 organisms/ml of mock-infected EDTA anticoagulated whole blood. The primer pair also amplified an ∼370-bp fragment of the B. gibsoni (USA/California genotype) 18S rRNA gene from the blood of an experimentally infected dog with a high percentage of parasitemia. Amplicons were not detected when DNA extracted from the blood of a dog that was naturally infected with Theileria annae at a low percentage of parasitemia was amplified. Due to limited sensitivity, this test is not recommended for the routine diagnosis of B. gibsoni (USA/California genotype) or T. annae. The PCR test did not amplify Toxoplasma gondii, Neospora caninum, Leishmania infantum, Cryptosporidium parvum, or canine DNA under any of the conditions tested. The seminested PCR test was able to detect and discriminate B. gibsoni (Asian genotype), B. canis subsp. vogeli, B. canis subsp. canis, and B. canis subsp. rossi DNA in blood samples from infected dogs.

437 citations

Journal ArticleDOI
TL;DR: The particles of dust introduce into space a privileged system of coordinates that allows the supermomentum constraint to be solved explicitly and yields a formally conserved inner product that can be written in terms of either the instantaneous state functionals or the solutions of constraints.
Abstract: The coupling of the metric to an incoherent dust introduces into spacetime a privileged dynamical reference frame and time foliation. The comoving coordinates of the dust particles and the proper time along the dust worldlines become canonical coordinates in the phase space of the system. The Hamiltonian constraint can be resolved with respect to the momentum that is canonically conjugate to the dust time. Formal imposition of the resolved constraint as an operator restriction on the quantum states yields a functional Schr\"odinger equation. The ensuing Hamiltonian density has an extraordinary feature: it depends only on the geometric variables, not on the dust coordinates or time. This has three important consequences. First, the functional Schr\"odinger equation can be solved by separating the dust time from the geometric variables. Second, disregarding the standard factor-ordering difficulties, the Hamiltonian densities strongly commute and therefore can be simultaneously defined by spectral analysis. Third, the standard constraint system of vacuum gravity is cast into a form in which it generates a true Lie algebra. The particles of dust introduce into space a privileged system of coordinates that allows the supermomentum constraint to be solved explicitly. The Schr\"odinger equation yields a formally conserved inner product that can be written in terms of either the instantaneous state functionals or the solutions of constraints. Gravitational observables admit a similar dual representation. Examples of observables are given, though neither the intrinsic metric nor the extrinsic curvature are observables. This comes as close as one can reasonably expect to a satisfactory phenomenological quantization scheme that is free of most of the problems of time.

436 citations

Journal ArticleDOI
27 Jan 2016-JOM
TL;DR: In this article, the authors highlight some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components.
Abstract: This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.

435 citations

Journal ArticleDOI
TL;DR: In this article, a ball milling-based in situ consolidation technique was used to produce fully dense nanocrystalline Cu samples centimeters in lateral dimensions and about one millimeter in thickness.

435 citations


Authors

Showing all 44525 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023160
2022652
20215,262
20205,459
20194,888
20184,522