scispace - formally typeset
Search or ask a question
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topics: Population & Thin film. The organization has 44161 authors who have published 101744 publications receiving 3456774 citations. The organization is also known as: NCSU & North Carolina State University at Raleigh.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines and observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes.
Abstract: Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically intercorrelated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression and transcription factor binding sites. The high degree of transcriptional connectivity allows us to infer genetic networks and the function of predicted genes from annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provide insight into the molecular basis of pleiotropy between complex traits. Natural populations harbor a wide range of phenotypic variation for all aspects of morphology, physiology, behaviors and disease susceptibility. Knowledge of the genetic basis of this variation is important for understanding adaptive evolution, deriving elite domestic crop and animal strains and improving human health. However, determining the genetic architecture of natural phenotypic variation is challenging because most phenotypic variation is attributable to segregating alleles at many interacting genes with environmentally sensitive effects 1,2 .

524 citations

Book
01 Feb 2021
TL;DR: In this article, the authors present a comparison of electric vehicles and hybrid electric vehicles in terms of mass, mass analysis and packaging of battery energy storage batteries in electric and hybrid vehicles.
Abstract: Introduction to Alternative Vehicles Electric Vehicles Hybrid Electric Vehicles Electric and Hybrid Vehicle Components Vehicle Mass and Performance Electric Motor and Engine Ratings Electric and Hybrid Vehicle History Well-to-Wheel Analysis EV/ICEV Comparison Electric Vehicle Market Vehicle Mechanics Roadway Fundamentals Laws of Motion Vehicle Kinetics Dynamics of Vehicle Motion Propulsion Power Velocity and Acceleration Tire-Road Force Mechanics Propulsion System Design Alternative Vehicle Architectures Electric Vehicles Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicle Powertrain Component Sizing Mass Analysis and Packaging Vehicle Simulation Battery Energy Storage Batteries in Electric and Hybrid Vehicles Battery Basics Battery Parameters Electrochemical Cell Fundamentals Battery Modeling Traction Batteries Battery Pack Management Alternative Energy Storage Fuel Cells Ultracapacitors Compressed Air Storage Flywheels Electric Machines Simple Electric Machines DC Machines Three-Phase AC Machines Induction Machines Permanent Magnet Machines Switched Reluctance Machines Power Electronic Converters Power Electronic Switches DC/DC Converters Cell Balancing Converters Electric Motor Drives Electric Drive Components DC Drives Operating Point Analysis AC Drives SRM Drives Control of AC Machines Vector Control of AC Motors dq Modeling Induction Machine Vector Control PM Machine Vector Control Internal Combustion Engines Internal Combustion Engines BMEP and BSFC Vehicle Fuel Economy Emission Control System Powertrain Components and Brakes Powertrain Components Gears Clutches Differential Transmission Vehicle Brakes Cooling Systems Climate Control System Powertrain Component Cooling System Hybrid Vehicle Control Strategy Vehicle Supervisory Controller Mode Selection Strategy Modal Control Strategies Vehicle Communications OSI Seven-Layer Model In-Vehicle Communications Controller Area Network Index References appear at the end of each chapter. Problems are included at the end of most chapters.

524 citations

Journal ArticleDOI
TL;DR: In this article, a review of the thermal wave theory and its application in the microscopic two-step model is presented. And the authors show that the energy equation may be reduced to that governing the heat transport through the metal lattice.
Abstract: This work contains three major components: a thorough review on the research emphasizing engineering applications of the thermal wave theory, special features in thermal wave propagation, and the thermal wave model in relation to the microscopic two-step model. For the sake of convenience, the research works are classified according to their individual emphases. Special features in thermal wave propagation include the sharp wavefront and rate effects, the thermal shock phenomenon, the thermal resonance phenomenon, and reflections and refractions of thermal waves across a material interface. By employing the dual-phase-lag concept, we show that the energy equation may be reduced to that governing the heat transport through the metal lattice in the microscopic two-step model

524 citations

Journal ArticleDOI
TL;DR: It is proposed that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
Abstract: Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Additionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus-induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions currently used by the research community. In addition to addressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.

523 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive survey is provided on available air-to-ground (AG) channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios.
Abstract: In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, wide availability, and relative ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail, relative to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios.

522 citations


Authors

Showing all 44525 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023160
2022652
20215,262
20205,459
20194,888
20184,522