scispace - formally typeset
Search or ask a question
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topics: Population & Thin film. The organization has 44161 authors who have published 101744 publications receiving 3456774 citations. The organization is also known as: NCSU & North Carolina State University at Raleigh.


Papers
More filters
Journal ArticleDOI
03 Aug 2001-Science
TL;DR: This work shows that disruption of a cadherin-superfamily gene by retrotransposon-mediated insertion was linked to high levels of resistance to the Bt toxin Cry1Ac in the cotton pest Heliothis virescens, enabling efficient DNA-based screening for resistant heterozygotes by directly detecting the recessive allele.
Abstract: Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are widely used for pest control. Bt-resistant insect strains have been studied, but the molecular basis of resistance has remained elusive. Here, we show that disruption of a cadherin-superfamily gene by retrotransposon-mediated insertion was linked to high levels of resistance to the Bt toxin Cry1Ac in the cotton pest Heliothis virescens. Monitoring the early phases of Bt resistance evolution in the field has been viewed as crucial but extremely difficult, especially when resistance is recessive. Our findings enable efficient DNA-based screening for resistant heterozygotes by directly detecting the recessive allele.

600 citations

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of how molecular chaperones function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.
Abstract: Protein folding in vivo is mediated by an array of proteins that act either as ‘foldases’ or ‘molecular chaperones’. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.

596 citations

Journal ArticleDOI
TL;DR: Some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels are highlighted, which focus on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions.
Abstract: Biofuels, such as bio-ethanol, bio-butanol, and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels because they offer the long-term promise of fuel-source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel-delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next-generation alternative fuels.

596 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed recent advances made in the determination and calculation of improved bounds on the effective properties of random heterogeneous media that depend upon the microstructure via n-point correlation functions.
Abstract: The purpose of the present article is to review recent advances made in the determination and calculation of improved bounds on the effective properties of random heterogeneous media that depend upon the microstructure via n-point correlation functions. New breakthroughs made in the quantitative characterization of the microstructure of heterogeneous materials are also reviewed. The following four different effective properties shall be studied: (i) effective conductivity tensor (which includes, by mathematical analogy, the dielectric constant, magnetic permeability, and diffusion coefficient); (ii) effective stiffness tensor; (iii) diffusioncontrolled trapping constant; and (iv) fluid permeability tensor. It shall be demonstrated that improved upper and lower bounds can provide a relatively sharp estimate of the effective property even when the bounds diverge from one another. Although this article reviews stateof-the-art advances in the field, an attempt will be made to elucidate methods and principles for the nonexpert.

596 citations

Journal ArticleDOI
TL;DR: This quasi-experimental study evaluated a teacher created video game on genetics in terms of its affective and cognitive impact on student users and found no differences in student learning as measured by the instrument.
Abstract: The popularity of video games has transcended entertainment crossing into the world of education. While the literature base on educational gaming is growing, there is still a lack of systematic study of this emerging technology's efficacy. This quasi-experimental study evaluated a teacher created video game on genetics in terms of its affective and cognitive impact on student users. While statistical results indicated no differences (p>.05) in student learning as measured by our instrument, there were significant differences (p<.05) found in the participants' level of engagement while interfacing with the video game. Implications on this emerging line of inquiry are discussed.

595 citations


Authors

Showing all 44525 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023160
2022652
20215,262
20205,459
20194,888
20184,522