scispace - formally typeset
Search or ask a question
Institution

Philips

CompanyVantaa, Finland
About: Philips is a company organization based out in Vantaa, Finland. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 68260 authors who have published 99663 publications receiving 1882329 citations. The organization is also known as: Koninklijke Philips Electronics N.V. & Royal Philips Electronics.


Papers
More filters
Journal ArticleDOI
TL;DR: Quantification of the signal from cell monolayers imaged at 1.5 T demonstrated, as predicted via modeling, that only picomolar concentrations of paramagnetic perfluorocarbon nanoparticles were required for the detection and quantification of tissue factor at clinical field strengths.
Abstract: Before molecular imaging with MRI can be applied clinically, certain problems, such as the potential sparseness of molecular epitopes on targeted cell surfaces, and the relative weakness of conventional targeted MR contrast agents, must be overcome. Accordingly, the conditions for diagnostic conspicuity that apply to any paramagnetic MRI contrast agent with known intrinsic relaxivity were examined in this study. A highly potent paramagnetic liquid perfluorocarbon nanoparticle contrast agent ( approximately 250 nm diameter, >90,000 Gd3+/particle) was imaged at 1.5 T and used to successfully predict a range of sparse concentrations in experimental phantoms with the use of standard MR signal models. Additionally, we cultured and targeted the smooth muscle cell (SMC) monolayers that express "tissue factor," a glycoprotein of crucial significance to hemostasis and response to vascular injury, by conjugating an anti-tissue factor antibody fragment to the nanoparticles to effect specific binding. Quantification of the signal from cell monolayers imaged at 1.5 T demonstrated, as predicted via modeling, that only picomolar concentrations of paramagnetic perfluorocarbon nanoparticles were required for the detection and quantification of tissue factor at clinical field strengths. Thus, for targeted paramagnetic agents carrying high payloads of gadolinium, it is possible to quantify molecular epitopes present in picomolar concentrations in single cells with routine MRI.

278 citations

Journal ArticleDOI
TL;DR: The neglected issue of suboptimal validation of tissue tracking techniques is addressed in this review, in order to advocate for this matter.
Abstract: Myocardial tissue tracking imaging techniques have been developed for a more accurate evaluation of myocardial deformation (i.e. strain), with the potential to overcome the limitations of ejection fraction (EF) and to contribute, incremental to EF, to the diagnosis and prognosis in cardiac diseases. While most of the deformation imaging techniques are based on the similar principles of detecting and tracking specific patterns within an image, there are intra- and inter-imaging modality inconsistencies limiting the wide clinical applicability of strain. In this review, we aimed to describe the particularities of the echocardiographic and cardiac magnetic resonance deformation techniques, in order to understand the discrepancies in strain measurement, focusing on the potential sources of variation: related to the software used to analyse the data, to the different physics of image acquisition and the different principles of 2D vs. 3D approaches. As strain measurements are not interchangeable, it is highly desirable to work with validated strain assessment tools, in order to derive information from evidence-based data. There is, however, a lack of solid validation of the current tissue tracking techniques, as only a few of the commercial deformation imaging softwares have been properly investigated. We have, therefore, addressed in this review the neglected issue of suboptimal validation of tissue tracking techniques, in order to advocate for this matter.

278 citations

Journal ArticleDOI
TL;DR: An overview of the present status of research on carbon nanotube (CNT) field emitters and their applications is given and a detailed overview is given of the measured emission properties and related topics of CNT electron sources.
Abstract: In this review we give an overview of the present status of research on carbon nanotube (CNT) field emitters and their applications. Several different construction principles of field-emission devices with CNTs are summarized. The emission mechanism is introduced and a detailed overview is given of the measured emission properties and related topics of CNT electron sources. We give also several examples of field-emission devices with CNT electron emitters that are presently being investigated in the academic world as well as in industry. Carbon nanotube electron sources clearly have interesting properties, such as low voltage operation, good stability, long lifetime and high brightness. The most promising applications are the field-emission display and high-resolution electron-beam instruments. But several hurdles remain, such as the manufacture of an electron source or an array of electron sources with exactly the desired properties in a reproducible manner.

277 citations

Patent
Subramanian Muthu1, Chin Chang1
27 Dec 2000
TL;DR: In this paper, the combined light output (chromaticity) of a white light emitting LED luminaire is automatically controlled based on measurements by a single photodiode arranged to measure the light outputs of at least a plurality of the LEDs in the array.
Abstract: The combined light output (chromaticity) of a white light emitting LED luminaire is electronically controlled based on measurements by a single photodiode arranged to measure the light outputs of at least a plurality of the LEDs in the array. This is accomplished by measuring the light output of the LEDs in each color separately in a sequence of time pulses. For an array of red, green, and blue LEDs there are three time pulses in a measuring sequence. During each time pulse, the current for the color being measured is turned off. The response time of a typical photodiode is extremely short, so the measuring sequence can be performed in a sufficiently short time that an-observer will not detect it (e.g. 10 ms). Measured light outputs for the colors are compared to desired outputs, which may be set by user controls, and changes to the power supply for the color blocks are made as necessary. Chromaticity is thus automatically controlled without regard to the factors which may cause it to change. The user inputs permit varying the desired chromaticity to either warm white (more red output) or cool white (more blue output).

277 citations

Journal ArticleDOI
15 Feb 1989
TL;DR: In this article, a self-calibration technique based upon charge storage on the gate-source capacitance of CMOS transistors is presented, which can produce multiple copies of a reference current.
Abstract: A self-calibration technique based upon charge storage on the gate-source capacitance of CMOS transistors is presented. The technique can produce multiple copies of a reference current. Therefore, it is suitable for the calibration of high-resolution D/A (digital/analog) converters which are based upon equal current sources. As the storage capacitor is internal, no external components are required. A calibrated spare current source is used to allow continuous converter operation. This implies that no special calibration cycles are required. To show the capabilities of the calibration technique, it was implemented in a 16-b D/A converter. Measurement results show a total harmonic distortion of 0.0025% at a power consumption of 20 mW and a minimum supply voltage of 3 V. The design was fabricated in a 1.6- mu m double-metal CMOS process without special options. >

277 citations


Authors

Showing all 68268 results

NameH-indexPapersCitations
Mark Raymond Adams1471187135038
Dario R. Alessi13635474753
Mohammad Khaja Nazeeruddin12964685630
Sanjay Kumar120205282620
Mark W. Dewhirst11679757525
Carl G. Figdor11656652145
Mathias Fink11690051759
David B. Solit11446952340
Giulio Tononi11451158519
Jie Wu112153756708
Claire M. Fraser10835276292
Michael F. Berger10754052426
Nikolaus Schultz106297120240
Rolf Müller10490550027
Warren J. Manning10260638781
Network Information
Related Institutions (5)
Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

88% related

Stanford University
320.3K papers, 21.8M citations

88% related

National University of Singapore
165.4K papers, 5.4M citations

88% related

IBM
253.9K papers, 7.4M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202239
2021898
20201,428
20191,665
20181,378