scispace - formally typeset
Search or ask a question
Institution

Philips

CompanyVantaa, Finland
About: Philips is a company organization based out in Vantaa, Finland. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 68260 authors who have published 99663 publications receiving 1882329 citations. The organization is also known as: Koninklijke Philips Electronics N.V. & Royal Philips Electronics.


Papers
More filters
Book ChapterDOI
TL;DR: In this article, the authors present a self-contained account of the three transport regimes in semiconductor nanostructures, namely ballistic transport, diffusive transport and ballistic transport.
Abstract: Publisher Summary Quantum transport is conveniently studied in a two-dimensional electron gas (2DEG) because of the combination of a large Fermi wavelength and large mean free path. Semiconductor nanostructures are unique in offering the possibility of studying quantum transport in an artificial potential landscape. This is the regime of ballistic transport in which scattering with impurities are neglected. The chapter presents a self-contained account of these three novel transport regimes in semiconductor nanostructures. The study of quantum transport in semiconductor nanostructures is motivated by more than scientific interest. The fabrication of nanostructures relies on sophisticated crystal growth and lithographic techniques that exist because of the industrial effort toward the miniaturization of transistors. Conventional transistors operate in the regime of classical diffusive transport, which breaks down on short length scales. The discovery of novel transport regimes in semiconductor nanostructures provides options for the development of innovative future devices.

863 citations

Journal ArticleDOI
TL;DR: In this paper, a non-volatile memory device with flexible plastic active layers deposited from solution is presented, and the memory device is a ferroelectric field effect transistor (FeFET) made with a Ferroelectric fluoropolymer and a bisalkoxy-substituted poly(pphenylene vinylene) semiconductor material.
Abstract: We demonstrate a rewritable, non-volatile memory device with flexible plastic active layers deposited from solution. The memory device is a ferroelectric field-effect transistor (FeFET) made with a ferroelectric fluoropolymer and a bisalkoxy-substituted poly(p-phenylene vinylene) semiconductor material. The on- and off-state drain currents differ by several orders of magnitude, and have a long retention time, a high programming cycle endurance and short programming time. The remanent semiconductor surface charge density in the on-state has a high value of 18 mC m−2, which explains the large on/off ratio. Application of a moderate gate field raises the surface charge to 26 mC m−2, which is of a magnitude that is very difficult to obtain with conventional FETs because they are limited by dielectric breakdown of the gate insulator. In this way, the present ferroelectric–semiconductor interface extends the attainable field-effect band bending in organic semiconductors.

862 citations

Journal ArticleDOI
TL;DR: Key materials discoveries have prompted the rise of inorganic light-emitting diodes in the lighting industry and remaining challenges are being addressed to further extend the impact of this technology in lighting, displays and other applications.
Abstract: Key materials discoveries have prompted the rise of inorganic light-emitting diodes in the lighting industry. Remaining challenges are being addressed to further extend the impact of this technology in lighting, displays and other applications.

853 citations

Journal ArticleDOI
TL;DR: In this article, a recombination model for device simulation that includes both trap-assisted tunneling (under forward and reverse bias) and band-to-band tunneling is presented, which makes it easy to implement in a numerical device simulator.
Abstract: A recombination model for device simulation that includes both trap-assisted tunneling (under forward and reverse bias) and band-to-band tunneling (Zener tunneling) is presented. The model is formulated in terms of analytical functions of local variables, which makes it easy to implement in a numerical device simulator. The trap-assisted tunneling effect is described by an expression that for weak electric fields reduces to the conventional Shockley-Read-Hall (SRH) expression for recombination via traps. Compared to the conventional SRH expression, the model has one extra physical parameter, the effective mass m*. For m*=0.25 m/sub 0/ the model correctly describes the experimental observations associated with tunneling. The band-to-band tunneling contribution is found to be important at room temperature for electric fields larger than 7*10/sup 5/ V/cm. For dopant concentrations above 5*10/sup 17/ cm/sup -3/ or, equivalently, for breakdown voltages below approximately 5 V, the reverse characteristics are dominated by band-to-band tunneling. >

849 citations


Authors

Showing all 68268 results

NameH-indexPapersCitations
Mark Raymond Adams1471187135038
Dario R. Alessi13635474753
Mohammad Khaja Nazeeruddin12964685630
Sanjay Kumar120205282620
Mark W. Dewhirst11679757525
Carl G. Figdor11656652145
Mathias Fink11690051759
David B. Solit11446952340
Giulio Tononi11451158519
Jie Wu112153756708
Claire M. Fraser10835276292
Michael F. Berger10754052426
Nikolaus Schultz106297120240
Rolf Müller10490550027
Warren J. Manning10260638781
Network Information
Related Institutions (5)
Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

88% related

Stanford University
320.3K papers, 21.8M citations

88% related

National University of Singapore
165.4K papers, 5.4M citations

88% related

IBM
253.9K papers, 7.4M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202239
2021898
20201,428
20191,665
20181,378