scispace - formally typeset
Search or ask a question
Institution

Philips

CompanyVantaa, Finland
About: Philips is a company organization based out in Vantaa, Finland. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 68260 authors who have published 99663 publications receiving 1882329 citations. The organization is also known as: Koninklijke Philips Electronics N.V. & Royal Philips Electronics.


Papers
More filters
Patent
Larry Eshelman1, Srinivas Gutta1, John Milanski1, Daniel L. Pelletier1, Hugo J. Strubbe1 
21 Feb 2002
TL;DR: In this article, an alarm system monitors conditions of an independent person, yet one requiring some supervision, such as an elderly person living alone at home, and combines them to recognize subtle cues that may indicate a need for intervention by a supervisor.
Abstract: Briefly, an alarm system monitors conditions of an independent person, yet one requiring some supervision, such as an elderly person living alone at home. The system monitors a variety of independent signals and combines them to recognize subtle cues that may indicate there will be a need for intervention by a supervisor.

353 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a more automatic path tracking method for virtual endoscopy inside 3D medical images, which is based on previous work by Cohen and Kimmel [Int. J. Comp. Vis. 24 (1) (1997) 57] for extracting paths in 2D images using Fast Marching algorithm.

353 citations

Proceedings ArticleDOI
01 Jun 2000
TL;DR: An efficient implementation of YAPI is provided in the form of a C++ run-time library to execute the applications on a workstation and this methodology is evaluated on the design of a digital video broadcast system-on-chip.
Abstract: We present a programming interface called YAPI to model signal processing applications as process networks. The purpose of YAPI is to enable the reuse of signal processing applications and the mapping of signal processing applications onto heterogeneous systems that contain hardware and software components. To this end, YAPI separates the concerns of the application programmer, who determines the functionality of the system, and the system designer, who determines the implementation of the functionality. The proposed model of computation extends the existing model of Kahn process networks with channel selection to support non-deterministic events. We provide an efficient implementation of YAPI in the form of a C++ run-time library to execute the applications on a workstation. Subsequently, the applications are used by the system designer as input for mapping and performance analysis in the design of complex signal processing systems. We evaluate this methodology on the design of a digital video broadcast system-on-chip.

352 citations

Journal ArticleDOI
TL;DR: This model reproduces many aspects of the force distribution observed both in experiment and in numerical simulations of sphere packings, including exact results for certain contact angle probability distributions.
Abstract: We study theoretically the complex network of forces that is responsible for the static structure and properties of granular materials. We present detailed calculations for a model in which the fluctuations in the force distribution arise because of variations in the contact angles and the constraints imposed by the force balance on each bead of the pile. We compare our results for the force distribution function for this model, including exact results for certain contact angle probability distributions, with numerical simulations of force distributions in random sphere packings. This model reproduces many aspects of the force distribution observed both in experiment and in numerical simulations of sphere packings. Our model is closely related to some that have been studied in the context of self-organized criticality. We present evidence that in the force distribution context, "critical" power-law force distributions occur only when a parameter (hidden in other interpretations) is tuned. Our numerical, mean field, and exact results all indicate that for almost all contact distributions the distribution of forces decays exponentially at large forces.

351 citations


Authors

Showing all 68268 results

NameH-indexPapersCitations
Mark Raymond Adams1471187135038
Dario R. Alessi13635474753
Mohammad Khaja Nazeeruddin12964685630
Sanjay Kumar120205282620
Mark W. Dewhirst11679757525
Carl G. Figdor11656652145
Mathias Fink11690051759
David B. Solit11446952340
Giulio Tononi11451158519
Jie Wu112153756708
Claire M. Fraser10835276292
Michael F. Berger10754052426
Nikolaus Schultz106297120240
Rolf Müller10490550027
Warren J. Manning10260638781
Network Information
Related Institutions (5)
Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

88% related

Stanford University
320.3K papers, 21.8M citations

88% related

National University of Singapore
165.4K papers, 5.4M citations

88% related

IBM
253.9K papers, 7.4M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202239
2021898
20201,428
20191,665
20181,378