scispace - formally typeset
Search or ask a question
Institution

Technion – Israel Institute of Technology

EducationHaifa, Israel
About: Technion – Israel Institute of Technology is a education organization based out in Haifa, Israel. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 31714 authors who have published 79377 publications receiving 2603976 citations. The organization is also known as: Technion Israel Institute of Technology & Ṭekhniyon, Makhon ṭekhnologi le-Yiśraʼel.


Papers
More filters
Journal ArticleDOI
TL;DR: Among patients with newly diagnosed advanced ovarian cancer who had a response to platinum-based chemotherapy, those who received niraparib had significantly longer progression-free survival thanThose who received placebo, regardless of the presence or absence of homologous-recombination deficiency.
Abstract: Background Niraparib, an inhibitor of poly(adenosine diphosphate [ADP]–ribose) polymerase (PARP), has been associated with significantly increased progression-free survival among patients ...

1,106 citations

Journal ArticleDOI
TL;DR: This survey discusses various approximation-theoretic problems that arise in the multilayer feedforward perceptron (MLP) model in neural networks.
Abstract: In this survey we discuss various approximation-theoretic problems that arise in the multilayer feedforward perceptron (MLP) model in neural networks. The MLP model is one of the more popular and practical of the many neural network models. Mathematically it is also one of the simpler models. Nonetheless the mathematics of this model is not well understood, and many of these problems are approximation-theoretic in character. Most of the research we will discuss is of very recent vintage. We will report on what has been done and on various unanswered questions. We will not be presenting practical (algorithmic) methods. We will, however, be exploring the capabilities and limitations of this model.

1,093 citations

Journal ArticleDOI
11 Jan 2013-Science
TL;DR: High-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical Conductivity of metals are reported.
Abstract: Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.

1,092 citations

Journal ArticleDOI
TL;DR: The prime focus is bridging theory and practice, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware in compressive sensing.
Abstract: Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.

1,090 citations

Journal ArticleDOI
TL;DR: It is shown that an array of sensors based on gold nanoparticles can rapidly distinguish the breath of lung cancer patients from the Breath of healthy individuals in an atmosphere of high humidity.
Abstract: Conventional diagnostic methods for lung cancer 1,2 are unsuitable for widespread screening 2,3 because they are expensive and occasionally miss tumours. Gas chromatography/mass spectrometry studies have shown that several volatile organic compounds, which normally appear at levels of 1–20 ppb in healthy human breath, are elevated to levels between 10 and 100 ppb in lung cancer patients 4–6 . Here we show that an array of sensors based on gold nanoparticles can rapidly distinguish the breath of lung cancer patients from the breath of healthy individuals in an atmosphere of high humidity. In combination with solidphase microextraction 7 , gas chromatography/mass spectrometry was used to identify 42 volatile organic compounds that represent lung cancer biomarkers. Four of these were used to train and optimize the sensors, demonstrating good agreement between patient and simulated breath samples. Our results show that sensors based on gold nanoparticles could form the basis of an inexpensive and non-invasive diagnostic tool for lung cancer. Lung cancer accounts for 28% of cancer-related deaths.

1,088 citations


Authors

Showing all 31937 results

NameH-indexPapersCitations
Robert Langer2812324326306
Nicholas G. Martin1921770161952
Tobin J. Marks1591621111604
Grant W. Montgomery157926108118
David Eisenberg156697112460
David J. Mooney15669594172
Dirk Inzé14964774468
Jerrold M. Olefsky14359577356
Joseph J.Y. Sung142124092035
Deborah Estrin135562106177
Bruce Yabsley133119184889
Jerry W. Shay13363974774
Richard N. Bergman13047791718
Shlomit Tarem129130686919
Allen Mincer129104080059
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Stanford University
320.3K papers, 21.8M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022390
20213,397
20203,526
20193,273
20183,131