scispace - formally typeset
Search or ask a question
Institution

Technion – Israel Institute of Technology

EducationHaifa, Israel
About: Technion – Israel Institute of Technology is a education organization based out in Haifa, Israel. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 31714 authors who have published 79377 publications receiving 2603976 citations. The organization is also known as: Technion Israel Institute of Technology & Ṭekhniyon, Makhon ṭekhnologi le-Yiśraʼel.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a special issue on localization techniques in quantum field theory is presented, where a summary of individual chapters is given and their interrelation is discussed, as well as their interrelationships among them.
Abstract: This is the foreword to the special issue on localization techniques in quantum field theory. The summary of individual chapters is given and their interrelation is discussed.

383 citations

Journal ArticleDOI
19 Mar 2015-Nature
TL;DR: Results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation, and identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains.
Abstract: Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.

383 citations

Journal ArticleDOI
TL;DR: It is shown that theNonuniformity in the angular distribution of the fibers accounts for the observed anisotropic behavior of the tissue, and that the nonuniformities in the geometrical structure of the fiber accounts forThe nonlinear stress-strain relations.

383 citations

Proceedings ArticleDOI
21 Oct 2006
TL;DR: A measure on graphs, the minrank, is identified, which exactly characterizes the minimum length of linear and certain types of nonlinear INDEX codes and for natural classes of side information graphs, including directed acyclic graphs, perfect graphs, odd holes, and odd anti-holes, minrank is the optimal length of arbitrary INDex codes.
Abstract: Motivated by a problem of transmitting data over broadcast channels (Birk and Kol, INFOCOM 1998), we study the following coding problem: a sender communicates with n receivers R_1, . . . , R_n. He holds an input x \in {0, 1}^n and wishes to broadcast a single message so that each receiver R_i can recover the bit x_i. Each R_i has prior side information about x, induced by a directed graph G on n nodes; R_i knows the bits of x in the positions {j | (i, j) is an edge of G}. We call encoding schemes that achieve this goal INDEX codes for {0, 1}^n with side information graph G. In this paper we identify a measure on graphs, the minrank, which we conjecture to exactly characterize the minimum length of INDEX codes. We resolve the conjecture for certain natural classes of graphs. For arbitrary graphs, we show that the minrank bound is tight for both linear codes and certain classes of non-linear codes. For the general problem, we obtain a (weaker) lower bound that the length of an INDEX code for any graph G is at least the size of the maximum acyclic induced subgraph of G.

383 citations

Journal ArticleDOI
TL;DR: The aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy, leading to a selective reaction at a position distal to the initial double bond.
Abstract: Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

381 citations


Authors

Showing all 31937 results

NameH-indexPapersCitations
Robert Langer2812324326306
Nicholas G. Martin1921770161952
Tobin J. Marks1591621111604
Grant W. Montgomery157926108118
David Eisenberg156697112460
David J. Mooney15669594172
Dirk Inzé14964774468
Jerrold M. Olefsky14359577356
Joseph J.Y. Sung142124092035
Deborah Estrin135562106177
Bruce Yabsley133119184889
Jerry W. Shay13363974774
Richard N. Bergman13047791718
Shlomit Tarem129130686919
Allen Mincer129104080059
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Stanford University
320.3K papers, 21.8M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022390
20213,397
20203,526
20193,273
20183,131