scispace - formally typeset
Search or ask a question
Institution

Technion – Israel Institute of Technology

EducationHaifa, Israel
About: Technion – Israel Institute of Technology is a education organization based out in Haifa, Israel. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 31714 authors who have published 79377 publications receiving 2603976 citations. The organization is also known as: Technion Israel Institute of Technology & Ṭekhniyon, Makhon ṭekhnologi le-Yiśraʼel.


Papers
More filters
Journal ArticleDOI
TL;DR: To efficiently find the single sparse vector produced by the last reduction step, this paper suggests an empirical boosting strategy that improves the recovery ability of any given suboptimal method for recovering a sparse vector.
Abstract: The rapid developing area of compressed sensing suggests that a sparse vector lying in a high dimensional space can be accurately and efficiently recovered from only a small set of nonadaptive linear measurements, under appropriate conditions on the measurement matrix. The vector model has been extended both theoretically and practically to a finite set of sparse vectors sharing a common sparsity pattern. In this paper, we treat a broader framework in which the goal is to recover a possibly infinite set of jointly sparse vectors. Extending existing algorithms to this model is difficult due to the infinite structure of the sparse vector set. Instead, we prove that the entire infinite set of sparse vectors can be recovered by solving a single, reduced-size finite-dimensional problem, corresponding to recovery of a finite set of sparse vectors. We then show that the problem can be further reduced to the basic model of a single sparse vector by randomly combining the measurements. Our approach is exact for both countable and uncountable sets, as it does not rely on discretization or heuristic techniques. To efficiently find the single sparse vector produced by the last reduction step, we suggest an empirical boosting strategy that improves the recovery ability of any given suboptimal method for recovering a sparse vector. Numerical experiments on random data demonstrate that, when applied to infinite sets, our strategy outperforms discretization techniques in terms of both run time and empirical recovery rate. In the finite model, our boosting algorithm has fast run time and much higher recovery rate than known popular methods.

384 citations

Journal ArticleDOI
TL;DR: In this paper, a generalization of Slepian's lemma and Fernique's theorem is presented, which can be easily applied to give a new proof, with improved estimates, of Dvoretzky's theorem on the existence of almost spherical sections for arbitrary convex bodies in R N, while avoiding the isoperimetric inequality.
Abstract: We present a generalization of Slepian's lemma and Fernique's theorem. We show how these can be easily applied to give a new proof, with improved estimates, of Dvoretzky’s theorem on the existence of “almost” spherical sections for arbitrary convex bodies inR N, while avoiding the isoperimetric inequality.

384 citations

Journal ArticleDOI
TL;DR: Surprisingly, C3 N exhibits a ferromagnetic order at low temperatures (<96 K) when doped with hydrogen, which opens the door for both fundamental basic research and possible future applications.
Abstract: Graphene has initiated intensive research efforts on 2D crystalline materials due to its extraordinary set of properties and the resulting host of possible applications. Here the authors report on the controllable large-scale synthesis of C3 N, a 2D crystalline, hole-free extension of graphene, its structural characterization, and some of its unique properties. C3 N is fabricated by polymerization of 2,3-diaminophenazine. It consists of a 2D honeycomb lattice with a homogeneous distribution of nitrogen atoms, where both N and C atoms show a D6h -symmetry. C3 N is a semiconductor with an indirect bandgap of 0.39 eV that can be tuned to cover the entire visible range by fabrication of quantum dots with different diameters. Back-gated field-effect transistors made of single-layer C3 N display an on-off current ratio reaching 5.5 × 1010 . Surprisingly, C3 N exhibits a ferromagnetic order at low temperatures (<96 K) when doped with hydrogen. This new member of the graphene family opens the door for both fundamental basic research and possible future applications.

384 citations

Journal ArticleDOI
TL;DR: In this paper, a new notion of the core of a braided fusion category is introduced, which allows to separate the part of a fusion category that does not come from finite groups.
Abstract: We introduce a new notion of the core of a braided fusion category. It allows to separate the part of a braided fusion category that does not come from finite groups. We also give a comprehensive and self-contained exposition of the known results on braided fusion categories without assuming them pre-modular or non-degenerate. The guiding heuristic principle of our work is an analogy between braided fusion categories and Casimir Lie algebras.

384 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the agglomeration of two EBs is initiated by E‐cadherin‐mediated cell attachment and followed by active cell migration, which enables the development of a technology capable of controlling cell‐cell interactions in scalable culture by the mass encapsulation of ES cells in size‐specified agarose capsules.
Abstract: Embryonic stem (ES) cells are of significant interest as a renewable source of therapeutically useful cells. ES cell aggregation is important for both human and mouse embryoid body (EB) formation and the subsequent generation of ES cell derivatives. Aggregation between EBs (agglomeration), however, inhibits cell growth and differentiation in stirred or high-cell-density static cultures. We demonstrate that the agglomeration of two EBs is initiated by E-cadherin-mediated cell attachment and followed by active cell migration. We report the development of a technology capable of controlling cell-cell interactions in scalable culture by the mass encapsulation of ES cells in size-specified agarose capsules. When placed in stirred-suspension bioreactors, encapsulated ES cells can be used to produce scalable quantities of hematopoietic progenitor cells in a controlled environment.

383 citations


Authors

Showing all 31937 results

NameH-indexPapersCitations
Robert Langer2812324326306
Nicholas G. Martin1921770161952
Tobin J. Marks1591621111604
Grant W. Montgomery157926108118
David Eisenberg156697112460
David J. Mooney15669594172
Dirk Inzé14964774468
Jerrold M. Olefsky14359577356
Joseph J.Y. Sung142124092035
Deborah Estrin135562106177
Bruce Yabsley133119184889
Jerry W. Shay13363974774
Richard N. Bergman13047791718
Shlomit Tarem129130686919
Allen Mincer129104080059
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Stanford University
320.3K papers, 21.8M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022390
20213,397
20203,526
20193,273
20183,131