scispace - formally typeset
Search or ask a question
Institution

Technion – Israel Institute of Technology

EducationHaifa, Israel
About: Technion – Israel Institute of Technology is a education organization based out in Haifa, Israel. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 31714 authors who have published 79377 publications receiving 2603976 citations. The organization is also known as: Technion Israel Institute of Technology & Ṭekhniyon, Makhon ṭekhnologi le-Yiśraʼel.


Papers
More filters
Journal ArticleDOI
TL;DR: GOrilla is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets, and its unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation.
Abstract: Since the inception of the GO annotation project, a variety of tools have been developed that support exploring and searching the GO database In particular, a variety of tools that perform GO enrichment analysis are currently available Most of these tools require as input a target set of genes and a background set and seek enrichment in the target set compared to the background set A few tools also exist that support analyzing ranked lists The latter typically rely on simulations or on union-bound correction for assigning statistical significance to the results GOrilla is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets This is particularly useful in many typical cases where genomic data may be naturally represented as a ranked list of genes (eg by level of expression or of differential expression) GOrilla employs a flexible threshold statistical approach to discover GO terms that are significantly enriched at the top of a ranked gene list Building on a complete theoretical characterization of the underlying distribution, called mHG, GOrilla computes an exact p-value for the observed enrichment, taking threshold multiple testing into account without the need for simulations This enables rigorous statistical analysis of thousand of genes and thousands of GO terms in order of seconds The output of the enrichment analysis is visualized as a hierarchical structure, providing a clear view of the relations between enriched GO terms GOrilla is an efficient GO analysis tool with unique features that make a useful addition to the existing repertoire of GO enrichment tools GOrilla's unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation GOrilla is publicly available at: http://cbl-gorillacstechnionacil

3,157 citations

Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential, and observe both spontaneous PT symmetry breaking and power oscillations violating left-right symmetry.
Abstract: One of the fundamental axioms of quantum mechanics is associated with the Hermiticity of physical observables 1 . In the case of the Hamiltonian operator, this requirement not only implies real eigenenergies but also guarantees probability conservation. Interestingly, a wide class of non-Hermitian Hamiltonians can still show entirely real spectra. Among these are Hamiltonians respecting parity‐time (PT) symmetry 2‐7 . Even though the Hermiticity of quantum observables was never in doubt, such concepts have motivated discussions on several fronts in physics, including quantum field theories 8 , nonHermitian Anderson models 9 and open quantum systems 10,11 , to mention a few. Although the impact of PT symmetry in these fields is still debated, it has been recently realized that optics can provide a fertile ground where PT-related notions can be implemented and experimentally investigated 12‐15 . In this letter we report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential. We observe both spontaneous PT symmetry breaking and power oscillations violating left‐right symmetry. Our results may pave the way towards a new class of PT-synthetic materials with intriguing and unexpected properties that rely on non-reciprocal light propagation and tailored transverse energy flow. Before we introduce the concept of spacetime reflection in optics, we first briefly outline some of the basic aspects of this symmetry within the context of quantum mechanics. In general, a Hamiltonian HD p 2 =2mCV(x

3,097 citations

Journal ArticleDOI
TL;DR: In this paper, the authors constructed three dimensional Chern-Simons-matter theories with gauge groups U(N) × U(n) and SU(N), SU(2) × SU (2) which have explicit = 6 superconformal symmetry.
Abstract: We construct three dimensional Chern-Simons-matter theories with gauge groups U(N) × U(N) and SU(N) × SU(N) which have explicit = 6 superconformal symmetry. Using brane constructions we argue that the U(N) × U(N) theory at level k describes the low energy limit of N M2-branes probing a C4/Zk singularity. At large N the theory is then dual to M-theory on AdS4 × S7/Zk. The theory also has a 't Hooft limit (of large N with a fixed ratio N/k) which is dual to type IIA string theory on AdS4 × CP3. For k = 1 the theory is conjectured to describe N M2-branes in flat space, although our construction realizes explicitly only six of the eight supersymmetries. We give some evidence for this conjecture, which is similar to the evidence for mirror symmetry in d = 3 gauge theories. When the gauge group is SU(2) × SU(2) our theory has extra symmetries and becomes identical to the Bagger-Lambert theory.

3,091 citations

Journal ArticleDOI
TL;DR: A classifier-induced divergence measure that can be estimated from finite, unlabeled samples from the domains and shows how to choose the optimal combination of source and target error as a function of the divergence, the sample sizes of both domains, and the complexity of the hypothesis class.
Abstract: Discriminative learning methods for classification perform well when training and test data are drawn from the same distribution. Often, however, we have plentiful labeled training data from a source domain but wish to learn a classifier which performs well on a target domain with a different distribution and little or no labeled training data. In this work we investigate two questions. First, under what conditions can a classifier trained from source data be expected to perform well on target data? Second, given a small amount of labeled target data, how should we combine it during training with the large amount of labeled source data to achieve the lowest target error at test time? We address the first question by bounding a classifier's target error in terms of its source error and the divergence between the two domains. We give a classifier-induced divergence measure that can be estimated from finite, unlabeled samples from the domains. Under the assumption that there exists some hypothesis that performs well in both domains, we show that this quantity together with the empirical source error characterize the target error of a source-trained classifier. We answer the second question by bounding the target error of a model which minimizes a convex combination of the empirical source and target errors. Previous theoretical work has considered minimizing just the source error, just the target error, or weighting instances from the two domains equally. We show how to choose the optimal combination of source and target error as a function of the divergence, the sample sizes of both domains, and the complexity of the hypothesis class. The resulting bound generalizes the previously studied cases and is always at least as tight as a bound which considers minimizing only the target error or an equal weighting of source and target errors.

2,921 citations


Authors

Showing all 31937 results

NameH-indexPapersCitations
Robert Langer2812324326306
Nicholas G. Martin1921770161952
Tobin J. Marks1591621111604
Grant W. Montgomery157926108118
David Eisenberg156697112460
David J. Mooney15669594172
Dirk Inzé14964774468
Jerrold M. Olefsky14359577356
Joseph J.Y. Sung142124092035
Deborah Estrin135562106177
Bruce Yabsley133119184889
Jerry W. Shay13363974774
Richard N. Bergman13047791718
Shlomit Tarem129130686919
Allen Mincer129104080059
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Stanford University
320.3K papers, 21.8M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022390
20213,397
20203,526
20193,273
20183,131