scispace - formally typeset
Search or ask a question
Institution

Technion – Israel Institute of Technology

EducationHaifa, Israel
About: Technion – Israel Institute of Technology is a education organization based out in Haifa, Israel. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 31714 authors who have published 79377 publications receiving 2603976 citations. The organization is also known as: Technion Israel Institute of Technology & Ṭekhniyon, Makhon ṭekhnologi le-Yiśraʼel.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that graphite spontaneously exfoliates into single-layer graphene in chlorosulphonic acid, and dissolves at isotropic concentrations as high as approximately 2 mg ml(-1), which is an order of magnitude higher than previously reported values.
Abstract: Graphene combines unique electronic properties and surprising quantum effects with outstanding thermal and mechanical properties. Many potential applications, including electronics and nanocomposites, require that graphene be dispersed and processed in a fluid phase. Here, we show that graphite spontaneously exfoliates into single-layer graphene in chlorosulphonic acid, and dissolves at isotropic concentrations as high as approximately 2 mg ml(-1), which is an order of magnitude higher than previously reported values. This occurs without the need for covalent functionalization, surfactant stabilization, or sonication, which can compromise the properties of graphene or reduce flake size. We also report spontaneous formation of liquid-crystalline phases at high concentrations ( approximately 20-30 mg ml(-1)). Transparent, conducting films are produced from these dispersions at 1,000 Omega square(-1) and approximately 80% transparency. High-concentration solutions, both isotropic and liquid crystalline, could be particularly useful for making flexible electronics as well as multifunctional fibres.

567 citations

Journal ArticleDOI
TL;DR: A brief review of the physical significance of the paradox of Einstein, Rosen, and Podolsky is given, and it is shown that it involves a kind of correlation of the properties of distant noninteracting systems, which is quite different from previously known kinds of correlation as discussed by the authors.
Abstract: A brief review of the physical significance of the paradox of Einstein, Rosen, and Podolsky is given, and it is shown that it involves a kind of correlation of the properties of distant noninteracting systems, which is quite different from previously known kinds of correlation. An illustrative hypothesis is considered, which would avoid the paradox, and which would still be consistent with all experimental results that have been analyzed to date. It is shown, however, that there already is an experiment whose significance with regard to this problem has not yet been explicitly brought out, but which is able to prove that this suggested resolution of the paradox (as well as a very wide class of such resolutions) is not tenable. Thus, this experiment may be regarded as the first clear empirical proof that the aspects of the quantum theory discussed by Einstein, Rosen, and Podolsky represent real properties of matter.

565 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of state-of-the-art methods and their applications in the field of water resources planning and management.
Abstract: During the last two decades, the water resources planning and management profession has seen a dramatic increase in the development and application of various types of evolutionary algorithms (EAs). This observation is especially true for application of genetic algorithms, arguably the most popular of the several types of EAs. Generally speaking, EAs repeatedly prove to be flexible and powerful tools in solving an array of complex water resources problems. This paper provides a comprehensive review of state-of-the-art methods and their applications in the field of water resources planning and management. A primary goal in this ASCE Task Committee effort is to identify in an organized fashion some of the seminal contributions of EAs in the areas of water distribution systems, urban drainage and sewer systems, water supply and wastewater treatment, hydrologic and fluvial modeling, groundwater systems, and parameter identification. The paper also identifies major challenges and opportunities for the future, ...

565 citations

Journal ArticleDOI
TL;DR: The VTEAM model extends the previously proposed ThrEshold Adaptive Memristor (TEAM) model, which describes current-controlled memristors and has similar advantages as the TEAM model, i.e., it is simple, general, and flexible, and can characterize different voltage-controlled Memristors.
Abstract: Memristors are novel electrical devices used for a variety of applications, including memory, logic circuits, and neuromorphic systems. Memristive technologies are attractive due to their nonvolatility, scalability, and compatibility with CMOS. Numerous physical experiments have shown the existence of a threshold voltage in some physical memristors. Additionally, as shown in this brief, some applications require voltage-controlled memristors to operate properly. In this brief, a Voltage ThrEshold Adaptive Memristor (VTEAM) model is proposed to describe the behavior of voltage-controlled memristors. The VTEAM model extends the previously proposed ThrEshold Adaptive Memristor (TEAM) model, which describes current-controlled memristors. The VTEAM model has similar advantages as the TEAM model, i.e., it is simple, general, and flexible, and can characterize different voltage-controlled memristors. The VTEAM model is accurate (below 1.5% in terms of the relative root-mean-square error) and computationally efficient as compared with existing memristor models and experimental results describing different memristive technologies.

564 citations

Journal ArticleDOI
TL;DR: A combination of molecular genetic, biochemical, chemical, crystallographic and microscopic techniques are paving the way for new insights into both the structure of cellulose and the mechanisms of its hydrolysis.

563 citations


Authors

Showing all 31937 results

NameH-indexPapersCitations
Robert Langer2812324326306
Nicholas G. Martin1921770161952
Tobin J. Marks1591621111604
Grant W. Montgomery157926108118
David Eisenberg156697112460
David J. Mooney15669594172
Dirk Inzé14964774468
Jerrold M. Olefsky14359577356
Joseph J.Y. Sung142124092035
Deborah Estrin135562106177
Bruce Yabsley133119184889
Jerry W. Shay13363974774
Richard N. Bergman13047791718
Shlomit Tarem129130686919
Allen Mincer129104080059
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Stanford University
320.3K papers, 21.8M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022390
20213,397
20203,526
20193,273
20183,131