scispace - formally typeset
Search or ask a question
Institution

University of Arkansas

EducationFayetteville, Arkansas, United States
About: University of Arkansas is a education organization based out in Fayetteville, Arkansas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 17225 authors who have published 33329 publications receiving 941102 citations. The organization is also known as: Arkansas & UA.


Papers
More filters
Journal ArticleDOI
TL;DR: It was found that a suppressed eye was able to contribute to stereopsis, and it was demonstrated that the predominance of an eye could be influenced by prior adaptation of the other eye, indicating that binocular mechanisms participate in the rivalry process.
Abstract: To answer the question 'what is suppressed during binocular rivalry?" a series of three experiments was performed. In the first experiment observers viewed binocular rivalry between orthogonally oriented patterns. When the dominant and suppressed patterns were interchanged between the eyes observers continued seeing with the dominant eye, indicating that an eye, not a pattern, is suppressed during rivalry. In a second experiment it was found that a suppressed eye was able to contribute to stereopsis. A third experiment demonstrated that the predominance of an eye could be influenced by prior adaptation of the other eye, indicating that binocular mechanisms participate in the rivalry process.

177 citations

Journal ArticleDOI
TL;DR: In this article, CSTR and packed-column models for the biological production of liquid and gaseous fuels from coal synthesis gas were presented for both liquid and gas synthesis gas.

177 citations

Journal ArticleDOI
TL;DR: The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured.

177 citations

Journal ArticleDOI
TL;DR: Calcium oxalate crystals do not negatively affect the performance of the pea aphid Acyrthosiphon pisum Harris, a sap-feeding insect with piercing-sucking mouthparts, and point to the potential value of genes controlling crystal formation and localization in crop plants.
Abstract: Calcium oxalate is the most abundant insoluble mineral found in plants and its crystals have been reported in more than 200 plant families. In the barrel medic Medicago truncatula Gaertn., these crystals accumulate predominantly in a sheath surrounding secondary veins of leaves. Mutants of M. truncatula with decreased levels of calcium oxalate crystals were used to assess the defensive role of this mineral against insects. Caterpillar larvae of the beet armyworm Spodoptera exigua Hubner show a clear feeding preference for tissue from calcium oxalate-defective (cod) mutant lines cod5 and cod6 in choice test comparisons with wild-type M. truncatula. Compared to their performance on mutant lines, larvae feeding on wild-type plants with abundant calcium oxalate crystals suffer significantly reduced growth and increased mortality. Induction of wound-responsive genes appears to be normal in cod5 and cod6, indicating that these lines are not deficient in induced insect defenses. Electron micrographs of insect mouthparts indicate that the prismatic crystals in M. truncatula leaves act as physical abrasives during feeding. Food utilization measurements show that, after consumption, calcium oxalate also interferes with the conversion of plant material into insect biomass during digestion. In contrast to their detrimental effects on a chewing insect, calcium oxalate crystals do not negatively affect the performance of the pea aphid Acyrthosiphon pisum Harris, a sap-feeding insect with piercing-sucking mouthparts. The results confirm a long-held hypothesis for the defensive function of these crystals and point to the potential value of genes controlling crystal formation and localization in crop plants.

177 citations

Journal ArticleDOI
TL;DR: The results in this report indicate that side reactions are extremely important for the formation of high quality nanocrystals by affecting their quality, yield, and stability under growth conditions.
Abstract: Effects of side reactions during the formation of high quality colloidal nanocrystals were studied using ZnO as a model system. In this case, an irreversible side reaction, formation of esters, was identified to accompany formation of ZnO nanocrystals through the chemical reaction between zinc stearate and an excess amount of alcohols in hydrocarbon solvents at elevated temperatures. This irreversible side reaction made the resulting nanocrystals stable and with nearly unity yield regardless of their size, shape, and size/shape distribution. Ostwald ripening and intraparticle ripening were stopped due to the extremely low solubility/stability of the possible monomers because all free ligands in the solution were consumed by the side reaction. However, focusing on size distribution and 1D growth that are needed for the growth of high quality nanocrystals could still occur for high yield reactions. Upon the addition of a small amount of stearic acid or phosphonic acid, immediate partial dissolution of ZnO nanocrystals took place. Although the excess alcohol could not react with the resulting zinc phosphonic acid salt, it could force the newly formed zinc stearate gradually but completely back onto the existing nanocrystals. The results in this report indicate that side reactions are extremely important for the formation of high quality nanocrystals by affecting their quality, yield, and stability under growth conditions. Due to their lack of information in the literature and obvious practical advantages, studies of side reactions accompanying formation of nanocrystals are important for both fundamental science related to crystallization and industrial production of high quality nanocrystals.

176 citations


Authors

Showing all 17387 results

NameH-indexPapersCitations
Robert M. Califf1961561167961
Hugh A. Sampson14781676492
Stephen Boyd138822151205
Nikhil C. Munshi13490667349
Jian-Guo Bian128121980964
Bart Barlogie12677957803
Robert R. Wolfe12456654000
Daniel B. Mark12457678385
E. Magnus Ohman12462268976
Benoît Roux12049362215
Robert C. Haddon11257752712
Rodney J. Bartlett10970056154
Baoshan Xing10982348944
Gareth J. Morgan109101952957
Josep Dalmau10856849331
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022244
20211,973
20201,889
20191,737
20181,636