scispace - formally typeset
Search or ask a question
Institution

University of Massachusetts Amherst

EducationAmherst Center, Massachusetts, United States
About: University of Massachusetts Amherst is a education organization based out in Amherst Center, Massachusetts, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 37274 authors who have published 83965 publications receiving 3834996 citations. The organization is also known as: UMass Amherst & Massachusetts State College.


Papers
More filters
Journal ArticleDOI
TL;DR: Examples are outlined that illustrate the design criteria for achieving macromolecular assemblies that incorporate a combination of two or more chemical, physical or biological stimuli-responsive components to explain the origin of employed mechanisms of stimuli responsiveness.
Abstract: In this review, we outline examples that illustrate the design criteria for achieving macromolecular assemblies that incorporate a combination of two or more chemical, physical or biological stimuli-responsive components. Progress in both fundamental investigation into the phase transformations of these polymers in response to multiple stimuli and their utilization in a variety of practical applications are highlighted. Using these examples, we aim to explain the origin of employed mechanisms of stimuli responsiveness which may serve as a guideline to inspire future design of multi-stimuli responsive materials.

526 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations

Journal ArticleDOI
TL;DR: In this article, the important properties of three components in a general polymer nanocomposite: the polymer matrix, the nanoscale filler, and the interfacial region are discussed, highlighting theory and experimental observations from several different fields to help guide the future research and development of understanding in this critical field.
Abstract: Polymer nanocomposites offer significant potential in the development of advanced materials for numerous applications These novel materials benefit from the synergy between filler particles and polymer chains that are on similar length scales and the large quantity of interfacial area relative to the volume of the material Although enhanced properties of these materials have been demonstrated by numerous researchers, our fundamental knowledge of the “nano” effect in terms of mechanical properties is not fully developed In this article, we discuss the important properties of three components in a general polymer nanocomposite: the polymer matrix, the nanoscale filler, and the interfacial region We highlight theory and experimental observations from several different fields to help guide the future research and development of understanding in this critical field

525 citations

Journal ArticleDOI
TL;DR: The Local Volume Legacy (LVL) survey as discussed by the authors is a collection of low-luminosity galaxies with a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-lightosity galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer.
Abstract: The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Hα, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Hα and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

525 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the relation between star formation rate and gas surface densities in Galactic star-forming regions using a sample of young stellar objects (YSOs) and massive dense clumps.
Abstract: We investigate the relation between star formation rate (SFR) and gas surface densities in Galactic star-forming regions using a sample of young stellar objects (YSOs) and massive dense clumps. Our YSO sample consists of objects located in 20 large molecular clouds from the Spitzer cores to disks (c2d) and Gould's Belt (GB) surveys. These data allow us to probe the regime of low-mass star formation, essentially invisible to tracers of high-mass star formation used to establish extragalactic SFR-gas relations. We estimate the gas surface density (Σgas) from extinction (AV ) maps and YSO SFR surface densities (ΣSFR) from the number of YSOs, assuming a mean mass and lifetime. We also divide the clouds into evenly spaced contour levels of AV , counting only Class I and Flat spectral energy distribution YSOs, which have not yet migrated from their birthplace. For a sample of massive star-forming clumps, we derive SFRs from the total infrared luminosity and use HCN gas maps to estimate gas surface densities. We find that c2d and GB clouds lie above the extragalactic SFR-gas relations (e.g., Kennicutt-Schmidt law) by factors of up to 17. Cloud regions with high Σgas lie above extragalactic relations up to a factor of 54 and overlap with high-mass star-forming regions. We use 12CO and 13CO gas maps of the Perseus and Ophiuchus clouds from the COMPLETE survey to estimate gas surface densities and compare to measurements from AV maps. We find that 13CO, with the standard conversions to total gas, underestimates the AV -based mass by factors of ~4-5. 12CO may underestimate the total gas mass at Σgas 200 M ☉ pc–2 by 30%; however, this small difference in mass estimates does not explain the large discrepancy between Galactic and extragalactic relations. We find evidence for a threshold of star formation (Σth) at 129 ± 14 M ☉ pc–2. At Σgas>Σth, the Galactic SFR-gas relation is linear. A possible reason for the difference between Galactic and extragalactic relations is that much of Σgas is below Σth in extragalactic studies, which detect all the CO-emitting gas. If the Kennicutt-Schmidt relation (ΣSFR Σ1.4 gas) and a linear relation between dense gas and star formation are assumed, the fraction of dense star-forming gas (f dense) increases as ~Σ0.4 gas. When Σgas reaches ~300 Σth, the fraction of dense gas is ~1, creating a maximal starburst.

524 citations


Authors

Showing all 37601 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Joan Massagué189408149951
David H. Weinberg183700171424
David L. Kaplan1771944146082
Michael I. Jordan1761016216204
James F. Sallis169825144836
Bradley T. Hyman169765136098
Anton M. Koekemoer1681127106796
Derek R. Lovley16858295315
Michel C. Nussenzweig16551687665
Alfred L. Goldberg15647488296
Donna Spiegelman15280485428
Susan E. Hankinson15178988297
Bernard Moss14783076991
Roger J. Davis147498103478
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022536
20213,983
20203,858
20193,712
20183,385