scispace - formally typeset
Search or ask a question
Institution

Wuhan University

EducationWuhan, China
About: Wuhan University is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Computer science & Population. The organization has 92849 authors who have published 92882 publications receiving 1691049 citations. The organization is also known as: WHU & Wuhan College.


Papers
More filters
Journal ArticleDOI
TL;DR: The results showed that low amounts of Co (<5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolding support BMSC attachment and proliferation.

361 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: This work explores the multi-scale collaborative representation for rain streaks from the perspective of input image scales and hierarchical deep features in a unified framework, termed multi- scale progressive fusion network (MSPFN) for single image rain streak removal.
Abstract: Rain streaks in the air appear in various blurring degrees and resolutions due to different distances from their positions to the camera. Similar rain patterns are visible in a rain image as well as its multi-scale (or multi-resolution) versions, which makes it possible to exploit such complementary information for rain streak representation. In this work, we explore the multi-scale collaborative representation for rain streaks from the perspective of input image scales and hierarchical deep features in a unified framework, termed multi-scale progressive fusion network (MSPFN) for single image rain streak removal. For the similar rain streaks at different positions, we employ recurrent calculation to capture the global texture, thus allowing to explore the complementary and redundant information at the spatial dimension to characterize target rain streaks. Besides, we construct multi-scale pyramid structure, and further introduce the attention mechanism to guide the fine fusion of these correlated information from different scales. This multi-scale progressive fusion strategy not only promotes the cooperative representation, but also boosts the end-to-end training. Our proposed method is extensively evaluated on several benchmark datasets and achieves the state-of-the-art results. Moreover, we conduct experiments on joint deraining, detection, and segmentation tasks, and inspire a new research direction of vision task driven image deraining. The source code is available at https://github.com/kuihua/MSPFN.

361 citations

Journal ArticleDOI
TL;DR: It is shown that SARS-CoV-2 ORF3a can efficiently induce apoptosis in cells, and the mechanism through which it induces apoptosis via the extrinsic pathway is determined.
Abstract: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the ongoing pandemic of Coronavirus Disease 2019. SARS-CoV-2 belongs to the genus Betacoronavirus of the Coronaviridae family, which includes SARS-CoV and Middle East respiratory syndrome coronavirus. Coronavirus-encoded accessory proteins play critical roles in virus–host interactions and the modulation of host immune responses, thereby contributing to coronaviral pathogenicity via different strategies. However, the functions of SARS-CoV-2-encoded accessory proteins are not well understood. Apoptosis is a predominant type of programmed cell death, and has been recognized as an important host antiviral defense mechanism that controls viral infection and regulates the inflammatory response. Previous studies have reported that the SARS-CoV-encoded accessory protein ORF3a can induce apoptosis in cells, leading to the question of whether SARS-CoV-2 ORF3a also has pro-apoptotic activity. Here, we investigated the potential apoptosis-inducing activity of SARS-CoV-2 ORF3a in different cell lines and compared the pro-apoptotic activities of SARS-CoV-2 ORF3a with those of SARS-CoV ORF3a using the same system. We sought to determine whether SARS-CoV-2 ORF3a can induce apoptosis using annexin V-fluorescein 5-isothiocyanate(FITC)/propidium iodide (PI) double staining in cultured HEK293T, HepG2, and Vero E6 cells. We found that annexin V and PI staining was significantly increased in cells expressing SARS-CoV-2 ORF3a compared with that in control cells (Fig. 1a). Moreover, the quantified data based on measuring the apoptosis rate also confirmed the pro-apoptotic activity of ORF3a in different cell lines (Fig. 1b). Furthermore, we examined activated caspase-3, a marker of caspase-dependent apoptosis, by flow cytometry and found that the percentage of cells with activated caspase-3 was significantly elevated in the presence of ORF3a (Fig. 1c). These results show that SARS-CoV-2 ORF3a can efficiently induce apoptosis in cells. To determine the mechanism through which SARS-CoV-2 ORF3a induces apoptosis, activation of the apoptosis cascade in HEK293T cells expressing ORF3a was examined by western blotting, probing for some apoptosis pathway components at 24 and 48 h post transfection. Cells treated with staurosporine, an apoptosis inducer, were used as a positive control. SARS-CoV-2 ORF3a induced the cleavage/activation of caspase-8, whereas Bcl-2 expression levels were not affected (Fig. 1d). The cleavage/activation of caspase-8 is recognized as a hallmark of the extrinsic apoptotic pathway, whereas Bcl-2 plays an important role in initiation of the intrinsic pathway. Moreover, we found that the levels of truncated Bid (tBid), cleaved caspase-9, and cytochrome c were elevated in the presence of SARS-CoV-2 ORF3a (Fig. 1e), and either a caspase-8 or caspase-9 inhibitor significantly suppressed SARS-CoV-2 ORF3a-induced apoptosis (Fig. 1f, g). Thus, our results imply that SARS-CoV-2 ORF3a can induce apoptosis via the extrinsic pathway, in which activated caspase-8 cleaves Bid to tBid and in turn induces the release of mitochondrial cytochrome c, resulting in apoptosome formation and caspase-9 cleavage/activation. We next sought to examine the relationship between the membrane association and pro-apoptotic activity of SARS-CoV-2 ORF3a. As previously reported, SARS-CoV ORF3a is a transmembrane protein that contains several conserved motifs including a cysteine-rich motif (a.a.127–133), tyrosine-based sorting motif (YXXΦ; a.a.160–163), and diacidic EXD motif (a.a. 171–173), and these domains regulate the subcellular location of SARS-CoV ORF3a and play important roles in SARS-CoV ORF3a infection, inducing apoptosis. SARS-CoV-2 ORF3a shares 73% amino acid homology with its counterpart in SARS-CoV, and the cysteine-rich and YXXΦ motifs are conserved but the EXD motif was found to be changed to SGD in SARS-CoV-2 ORF3a (Fig. S1a). Thus, we constructed two mutant ORF3a proteins by mutating C130/133 of the cysteine-rich motif to S (SARS-CoV-2 ORF3a-CS) or Y160 of the YXXΦ motif to A (SARS-CoV-2 ORF3a-YA). The immunofluorescence assays showed that wild-type ORF3a of SARS-CoV-2 (ORF3a-WT) localized to the plasma membrane with punctate cytoplasmic staining, whereas ORF3a-CS and ORF3a-YA exhibited more cytoplasmic localization (Figs. 1h and S1b). The results of cytosol-membrane fractionation assays showed that whereas ORF3a-WT was present in both cytosol and membrane fractions, either ORF3a-CS or ORF3a-YA was absent in the membrane fraction (Figs. 1i and S1c). Moreover, we found that ORF3a-CS or ORF3a-YA showed minimal apoptosis-inducing and caspase-3activiting activity in cells in the presence or absence of z-VAD-fmk, a general caspase inhibitor (Figs. 1j and S1d). In addition, ORF3aCS or ORF3a-YA failed to induce the cleavage of Bid, caspase-8, and caspase-9 or the release of cytochrome c (Fig.1k, l). These results indicate that membrane association is required for the proapoptotic activity of SARS-CoV-2 ORF3a. To investigate if there is any difference between the proapoptotic activities of ORF3a proteins of SARS-CoV-2 and SARS-CoV, we examined the membrane association and apoptosis-induction ability of SARS-CoV ORF3a. SARS-CoV ORF3a variants were generated by mutating C127/130/133 to S (SARS-CoV ORF3a-CS)

360 citations

Journal ArticleDOI
TL;DR: The crosslinked chitosan/nano- CdS (CS/n-CdS) composite catalyst prepared by simulating bio-mineralization process was extensively characterized by FT-IR spectra, XRD, SEM, TEM and TGA and found to follow a pseudo-first-order kinetics according to Langmuir-Hinshelwood (L-H) model.

359 citations

Journal ArticleDOI
TL;DR: In this article, a detailed review of dye-sensitized semiconductor suspension systems for visible and near-IR light responsive photocatalytic H2 production is presented, and the commonly used dyes, semiconductors, co-catalysts and electron donors are systematically discussed.
Abstract: Photocatalytic water splitting by solar light has received tremendous attention for the production of clean and renewable hydrogen energy from water. Some challenges still remain in improving the solar-to-hydrogen energy conversion efficiency, such as utilizing longer-wavelength photons and enhancing the photocatalytic activity and stability of H2 production over semiconducting materials. Dye sensitization, as a successful strategy for extending the spectral responsive region (even to near-IR light) of wide bandgap semiconductors for H2 production, was developed more than 30 years ago, but it still lacks the corresponding specialized review. This review emphasizes especially the fundamental aspects and the research advances in heterogeneous dye-sensitized semiconductor suspension systems for visible (and even near-IR) light responsive photocatalytic H2 production, and the commonly used dyes, semiconductors, co-catalysts and electron donors are systematically discussed. Also, a short perspective on the challenges and new directions in this field is proposed, which would be of great interest in the field of solar fuel conversion.

359 citations


Authors

Showing all 93441 results

NameH-indexPapersCitations
Jing Wang1844046202769
Jiaguo Yu178730113300
Lei Jiang1702244135205
Gang Chen1673372149819
Omar M. Yaghi165459163918
Xiang Zhang1541733117576
Yi Yang143245692268
Thomas P. Russell141101280055
Jun Chen136185677368
Lei Zhang135224099365
Chuan He13058466438
Han Zhang13097058863
Lei Zhang130231286950
Zhen Li127171271351
Chao Zhang127311984711
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Fudan University
117.9K papers, 2.6M citations

92% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023286
20221,141
20219,719
20209,672
20197,977
20186,629