scispace - formally typeset
Search or ask a question

Showing papers by "Wuhan University published in 2018"


Journal ArticleDOI
Gregory A. Roth1, Gregory A. Roth2, Degu Abate3, Kalkidan Hassen Abate4  +1025 moreInstitutions (333)
TL;DR: Non-communicable diseases comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2).

5,211 citations


Journal ArticleDOI
Jeffrey D. Stanaway1, Ashkan Afshin1, Emmanuela Gakidou1, Stephen S Lim1  +1050 moreInstitutions (346)
TL;DR: This study estimated levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs) by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017 and explored the relationship between development and risk exposure.

2,910 citations


Journal ArticleDOI
08 Aug 2018-Nature
TL;DR: It is reported that metastatic melanomas release extracellular vesicles, mostly in the form of exosomes, that carry PD-L1 on their surface, suggesting a mechanism by which tumours could evade the immunesystem, and the potential application ofExosomal PD- L1 to monitor patient responses to checkpoint therapies.
Abstract: Tumour cells evade immune surveillance by upregulating the surface expression of programmed death-ligand 1 (PD-L1), which interacts with programmed death-1 (PD-1) receptor on T cells to elicit the immune checkpoint response1,2. Anti-PD-1 antibodies have shown remarkable promise in treating tumours, including metastatic melanoma2–4. However, the patient response rate is low4,5. A better understanding of PD-L1-mediated immune evasion is needed to predict patient response and improve treatment efficacy. Here we report that metastatic melanomas release extracellular vesicles, mostly in the form of exosomes, that carry PD-L1 on their surface. Stimulation with interferon-γ (IFN-γ) increases the amount of PD-L1 on these vesicles, which suppresses the function of CD8 T cells and facilitates tumour growth. In patients with metastatic melanoma, the level of circulating exosomal PD-L1 positively correlates with that of IFN-γ, and varies during the course of anti-PD-1 therapy. The magnitudes of the increase in circulating exosomal PD-L1 during early stages of treatment, as an indicator of the adaptive response of the tumour cells to T cell reinvigoration, stratifies clinical responders from non-responders. Our study unveils a mechanism by which tumour cells systemically suppress the immune system, and provides a rationale for the application of exosomal PD-L1 as a predictor for anti-PD-1 therapy. Melanoma cells release programmed death-ligand 1 (PD-L1) on the surface of circulating exosomes, suggesting a mechanism by which tumours could evade the immunesystem, and the potential application of exosomal PD-L1 to monitor patient responses to checkpoint therapies.

1,591 citations


Proceedings ArticleDOI
01 Jun 2018
TL;DR: The Dataset for Object Detection in Aerial Images (DOTA) as discussed by the authors is a large-scale dataset of aerial images collected from different sensors and platforms and contains objects exhibiting a wide variety of scales, orientations, and shapes.
Abstract: Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect 2806 aerial images from different sensors and platforms. Each image is of the size about 4000 A— 4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using 15 common object categories. The fully annotated DOTA images contains 188, 282 instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral. To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

1,502 citations


Journal ArticleDOI
07 Nov 2018-Nature
TL;DR: After alloying with metal cations, a lead-free halide double perovskite shows stable performance and remarkably efficient white-light emission, with possible applications in lighting and display technologies.
Abstract: Lighting accounts for one-fifth of global electricity consumption1. Single materials with efficient and stable white-light emission are ideal for lighting applications, but photon emission covering the entire visible spectrum is difficult to achieve using a single material. Metal halide perovskites have outstanding emission properties2,3; however, the best-performing materials of this type contain lead and have unsatisfactory stability. Here we report a lead-free double perovskite that exhibits efficient and stable white-light emission via self-trapped excitons that originate from the Jahn–Teller distortion of the AgCl6 octahedron in the excited state. By alloying sodium cations into Cs2AgInCl6, we break the dark transition (the inversion-symmetry-induced parity-forbidden transition) by manipulating the parity of the wavefunction of the self-trapped exciton and reduce the electronic dimensionality of the semiconductor4. This leads to an increase in photoluminescence efficiency by three orders of magnitude compared to pure Cs2AgInCl6. The optimally alloyed Cs2(Ag0.60Na0.40)InCl6 with 0.04 per cent bismuth doping emits warm-white light with 86 ± 5 per cent quantum efficiency and works for over 1,000 hours. We anticipate that these results will stimulate research on single-emitter-based white-light-emitting phosphors and diodes for next-generation lighting and display technologies. After alloying with metal cations, a lead-free halide double perovskite shows stable performance and remarkably efficient white-light emission, with possible applications in lighting and display technologies.

1,202 citations


Journal ArticleDOI
TL;DR: Yang et al. modify the oxide based electron transporting layer with organic acid and obtain planar-type cells with high certified efficiency of 21.5% and decent stability and success in suppressing hysteresis and record efficiency for planars-type devices using EDTA-complexed tin oxide (SnO2) electron-transport layer.
Abstract: Even though the mesoporous-type perovskite solar cell (PSC) is known for high efficiency, its planar-type counterpart exhibits lower efficiency and hysteretic response. Herein, we report success in suppressing hysteresis and record efficiency for planar-type devices using EDTA-complexed tin oxide (SnO2) electron-transport layer. The Fermi level of EDTA-complexed SnO2 is better matched with the conduction band of perovskite, leading to high open-circuit voltage. Its electron mobility is about three times larger than that of the SnO2. The record power conversion efficiency of planar-type PSCs with EDTA-complexed SnO2 increases to 21.60% (certified at 21.52% by Newport) with negligible hysteresis. Meanwhile, the low-temperature processed EDTA-complexed SnO2 enables 18.28% efficiency for a flexible device. Moreover, the unsealed PSCs with EDTA-complexed SnO2 degrade only by 8% exposed in an ambient atmosphere after 2880 h, and only by 14% after 120 h under irradiation at 100 mW cm−2. The development of high efficiency planar-type perovskite solar cell has been lagging behind the mesoporous-type counterpart. Here Yang et al. modify the oxide based electron transporting layer with organic acid and obtain planar-type cells with high certified efficiency of 21.5% and decent stability.

972 citations


Journal ArticleDOI
Jiayi Ma1, Yong Ma1, Chang Li1
TL;DR: This survey comprehensively survey the existing methods and applications for the fusion of infrared and visible images, which can serve as a reference for researchers inrared and visible image fusion and related fields.

849 citations


Journal ArticleDOI
TL;DR: It is found that strong π–π interactions in solid state can promote the persistent RTP and CS-CF3 shows the unique photo-induced phosphorescence in response to the changes in molecular packing, further confirming the key influence of the molecular packing on the RTP property.
Abstract: Organic luminogens with persistent room temperature phosphorescence (RTP) have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, these materials are still very scarce, partially due to the unclear mechanism and lack of designing guidelines. Herein we develop seven 10-phenyl-10H-phenothiazine-5,5-dioxide-based derivatives, reveal their different RTP properties and underlying mechanism, and exploit their potential imaging applications. Coupled with the preliminary theoretical calculations, it is found that strong π-π interactions in solid state can promote the persistent RTP. Particularly, CS-CF3 shows the unique photo-induced phosphorescence in response to the changes in molecular packing, further confirming the key influence of the molecular packing on the RTP property. Furthermore, CS-F with its long RTP lifetime could be utilized for real-time excitation-free phosphorescent imaging in living mice. Thus, our study paves the way for the development of persistent RTP materials, in both the practical applications and the inherent mechanism.

645 citations


Journal ArticleDOI
04 Apr 2018-Nature
TL;DR: Analysis of viral samples from deceased piglets shows that a bat coronav virus was responsible for an outbreak of fatal disease in China and highlights the importance of the identification of coronavirus diversity and distribution in bats in order to mitigate future outbreaks of disease.
Abstract: Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2–10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96–98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013–2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth. Analysis of viral samples from deceased piglets shows that a bat coronavirus was responsible for an outbreak of fatal disease in China and highlights the importance of the identification of coronavirus diversity and distribution in bats in order to mitigate future outbreaks of disease.

531 citations


Journal ArticleDOI
11 Jan 2018-Chem
TL;DR: In this paper, an overview of the recent developments in this emerging field can be found, along with a review of some of the most relevant works. But, the authors do not discuss the role of an appropriate sacrificial oxidant.

530 citations


Journal ArticleDOI
TL;DR: Current strategies include indirectly targeting myc by inhibiting its regulation and stability, and interaction with its partner Max, which is necessary for its regulation of gene expression, which provides promise for effective therapeutics against myc-dependent cancers.
Abstract: The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

Journal ArticleDOI
TL;DR: Investigation of human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex reveals reduced m6A mRNA methylation as an oncogenic mechanism in endometricrial cancer and identifies m 6A methylationAs a regulator of AKT signalling.
Abstract: N6-methyladenosine (m6A) messenger RNA methylation is a gene regulatory mechanism affecting cell differentiation and proliferation in development and cancer. To study the roles of m6A mRNA methylation in cell proliferation and tumorigenicity, we investigated human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex (METTL14). We found that about 70% of endometrial tumours exhibit reductions in m6A methylation that are probably due to either this METTL14 mutation or reduced expression of METTL3, another component of the methyltransferase complex. These changes lead to increased proliferation and tumorigenicity of endometrial cancer cells, likely through activation of the AKT pathway. Reductions in m6A methylation lead to decreased expression of the negative AKT regulator PHLPP2 and increased expression of the positive AKT regulator mTORC2. Together, these results reveal reduced m6A mRNA methylation as an oncogenic mechanism in endometrial cancer and identify m6A methylation as a regulator of AKT signalling.

Journal ArticleDOI
TL;DR: This finding relaxes the usually stringent material requirements for effective TADF emitters by comprising smaller radiative transition rates and less than ideal ΦPL s.
Abstract: The combination of rigid acridine donor and 1,8-naphthalimide acceptor has afforded two orange-red emitters of NAI-DMAC and NAI-DPAC with high rigidity in molecular structure and strongly pretwisted charge transfer state. Endowed with high photoluminescence quantum yields (ΦPL ), distinct thermally activated delayed fluorescence (TADF) characteristics, and preferentially horizontal emitting dipole orientations, these emitters afford record-high orange-red TADF organic light-emitting diodes (OLEDs) with external quantum efficiencies of up to 21-29.2%, significantly surpassing all previously reported orange-to-red TADF OLEDs. Notably, the influence of microcavity effect is verified to support the record-high efficiency. This finding relaxes the usually stringent material requirements for effective TADF emitters by comprising smaller radiative transition rates and less than ideal ΦPL s.

Journal ArticleDOI
TL;DR: In this article, an approach that improves the stability of non-flammable phosphate electrolytes by adjusting the molar ratio of Li salt to solvent was proposed. But their compatibility with electrode materials, especially graphite anodes, remains an obstacle owing to the strong catalytic activity of the anode surfaces.
Abstract: Non-flammable electrolytes could intrinsically eliminate fire hazards and improve battery safety, but their compatibility with electrode materials, especially graphite anodes, remains an obstacle owing to the strong catalytic activity of the anode surfaces. Here, we report an approach that improves the stability of non-flammable phosphate electrolytes by adjusting the molar ratio of Li salt to solvent. At a high Li salt-to-solvent molar ratio (~1:2), the phosphate solvent molecules are mostly coordinated with the Li+ cations, and the undesired reactivity of the solvent molecules toward the graphite anode can be effectively suppressed. High cycling Coulombic efficiency (99.7%), good cycle life and safe operation of commercial 18650 Li-ion cells with these electrolytes are demonstrated. In addition, these non-flammable electrolytes show reduced reactivity toward Li-metal electrodes. Non-dendritic Li-metal plating and stripping in Li–Cu half-cells are demonstrated with high Coulombic efficiency (>99%) and good stability.

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive review on the recent advances in the development of PBA frameworks as SIB cathodes with particular attention to the structure-performance correlation of the PBA materials and discuss the possible strategies to address the problems present in the SIB applications of PBAs.
Abstract: Sodium-ion batteries (SIBs) are considered to be a low-cost complement or competitor to Li-ion batteries for large-scale electric energy storage applications; however, their development has been less successful due to the lack of suitable host materials to enable reversible Na+ insertion reactions. Prussian blue analogs (PBAs) appear to be attractive candidates for SIB cathodes because of their open channel structure, compositional and electrochemical tunability. In this paper, the authors present a comprehensive review on the recent advances in the development of PBA frameworks as SIB cathodes with particular attention to the structure-performance correlation of the PBA materials, and discuss the possible strategies to address the problems present in the SIB applications of PBAs. Also, the development of the PBA frameworks for the insertion cathodes of other monovalent and multivalent ions is briefly introduced, with the aim of providing a new insight into the design and development of new host materials for the next-generation advanced batteries.

Journal ArticleDOI
TL;DR: This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields and focuses on antibacterial food packaging films.
Abstract: Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrie...

Journal ArticleDOI
TL;DR: The potential roles of ROS and nutritional antioxidants in the pathogenesis of several redox imbalance-related diseases and the attenuation of oxidative stress-induced damages are highlighted.
Abstract: The overproduction of reactive oxygen species (ROS) has been implicated in the development of various chronic and degenerative diseases such as cancer, respiratory, neurodegenerative, and digestive diseases. Under physiological conditions, the concentrations of ROS are subtlety regulated by antioxidants, which can be either generated endogenously or externally supplemented. A combination of antioxidant-deficiency and malnutrition may render individuals more vulnerable to oxidative stress, thereby increasing the risk of cancer occurrence. In addition, antioxidant defense can be overwhelmed during sustained inflammation such as in chronic obstructive pulmonary diseases, inflammatory bowel disease, and neurodegenerative disorders, cardiovascular diseases, and aging. Certain antioxidant vitamins, such as vitamin D, are essential in regulating biochemical pathways that lead to the proper functioning of the organs. Antioxidant supplementation has been shown to attenuate endogenous antioxidant depletion thus alleviating associated oxidative damage in some clinical research. However, some results indicate that antioxidants exert no favorable effects on disease control. Thus, more studies are warranted to investigate the complicated interactions between ROS and different types of antioxidants for restoration of the redox balance under pathologic conditions. This review highlights the potential roles of ROS and nutritional antioxidants in the pathogenesis of several redox imbalance-related diseases and the attenuation of oxidative stress-induced damages.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a new time series model based on Long Short-Term Memory (LSTM) as an alternative to computationally expensive physical models, which is composed of an LSTM layer with another fully connected layer on top of it.

Journal ArticleDOI
TL;DR: In this paper, the authors examine the influence of employing different proxies (total assets, total sales, and market capitalization) of firm size in 20 prominent areas in empirical corporate finance research.
Abstract: In empirical corporate finance, firm size is commonly used as an important, fundamental firm characteristic. However, no research comprehensively assesses the sensitivity of empirical results in corporate finance to different measures of firm size. This paper fills this hole by providing empirical evidence for a “measurement effect” in the “size effect”. In particular, we examine the influences of employing different proxies (total assets, total sales, and market capitalization) of firm size in 20 prominent areas in empirical corporate finance research. We highlight several empirical implications. First, in most areas of corporate finance the coefficients of firm size measures are robust in sign and statistical significance. Second, the coefficients on regressors other than firm size often change sign and significance when different size measures are used. Unfortunately, this suggests that some previous studies are not robust to different firm size proxies. Third, the goodness of fit measured by R-squared also varies with different size measures, suggesting that some measures are more relevant than others in different situations. Fourth, different proxies capture different aspects of “firm size”, and thus have different implications. Therefore, the choice of size measures needs both theoretical and empirical justification. Finally, our empirical assessment provides guidance to empirical corporate finance researchers who must use firm size measures in their work.

Journal ArticleDOI
Lu Zhang1, Shuang-Shuang Wan1, Chu-Xin Li1, Lu Xu1, Han Cheng1, Xian-Zheng Zhang1 
TL;DR: An adenosine triphosphate-responsive autocatalytic Fenton nanosystem was designed and synthesized for tumor ablation with self-supplied H2O2 and TA-mediated acceleration of Fe(III)/Fe(II) conversion to guarantee efficient Fenton reaction-mediated CDT.
Abstract: Chemodynamic therapy (CDT) can efficiently destroy tumor cells via Fenton reaction in the presence of H2O2 and a robust catalyst. However, it has faced severe challenges including the limited amounts of H2O2 and inefficiency of catalysts. Here, an adenosine triphosphate (ATP)-responsive autocatalytic Fenton nanosystem (GOx@ZIF@MPN), incorporated with glucose oxidase (GOx) in zeolitic imidazolate framework (ZIF) and then coated with metal polyphenol network (MPN), was designed and synthesized for tumor ablation with self-supplied H2O2 and TA-mediated acceleration of Fe(III)/Fe(II) conversion. In the ATP-overexpressed tumor cells, the outer shell MPN of GOx@ZIF@MPN was degraded into Fe(III) and tannic acid (TA) and the internal GOx was exposed. Then, GOx reacted with the endogenous glucose to produce plenty of H2O2, and TA reduced Fe(III) to Fe(II), which is a much more vigorous catalyst for the Fenton reaction. Subsequently, self-produced H2O2 was catalyzed by Fe(II) to generate highly toxic hydroxyl radic...

Proceedings ArticleDOI
18 Jun 2018
TL;DR: The proposed method named Rotation-sensitive Regression Detector (RRD) achieves state-of-the-art performance on several oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17, and COCO-Text, and achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.
Abstract: Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for both tasks, resulting in degraded performance due to the incompatibility of the two tasks. To address this issue, we propose to perform classification and regression on features of different characteristics, extracted by two network branches of different designs. Concretely, the regression branch extracts rotation-sensitive features by actively rotating the convolutional filters, while the classification branch extracts rotation-invariant features by pooling the rotation-sensitive features. The proposed method named Rotation-sensitive Regression Detector (RRD) achieves state-of-the-art performance on several oriented scene text benchmark datasets, including ICDAR 2015, MSRA-TD500, RCTW-17, and COCO-Text. Furthermore, RRD achieves a significant improvement on a ship collection dataset, demonstrating its generality on oriented object detection.

Journal ArticleDOI
TL;DR: It is found that farm size is a strong factor that affects the use intensity of agricultural chemicals across farms in China and this relationship has been distorted by land and migration policies, leading to the persistence of small farm size in China.
Abstract: Understanding the reasons for overuse of agricultural chemicals is critical to the sustainable development of Chinese agriculture. Using a nationally representative rural household survey from China, we found that farm size is a strong factor that affects the use intensity of agricultural chemicals across farms in China. Statistically, a 1% increase in farm size is associated with a 0.3% and 0.5% decrease in fertilizer and pesticide use per hectare (P < 0.001), respectively, and an almost 1% increase in agricultural labor productivity, while it only leads to a statistically insignificant 0.02% decrease in crop yields. The same pattern was also found using other independently collected data sources from China and an international panel analysis of 74 countries from the 1960s to the 2000s. While economic growth has been associated with increasing farm size in many other countries, in China this relationship has been distorted by land and migration policies, leading to the persistence of small farm size in China. Removing these distortions would decrease agricultural chemical use by 30-50% and the environmental impact of those chemicals by 50% while doubling the total income of all farmers including those who move to urban areas. Removing policy distortions is also likely to complement other remedies to the overuse problem, such as easing farmer's access to modern technologies and knowledge, and improving environmental regulation and enforcement.

Journal ArticleDOI
Mengqi Zeng1, Yao Xiao1, Jinxin Liu1, Kena Yang1, Lei Fu1 
TL;DR: This review will first overview the emerging 2D materials and then offer a clear guideline of varied physical and chemical strategies for tuning their properties and assembly strategies of2D materials will also be included.
Abstract: Two-dimensional (2D) materials have attracted tremendous research interest since the breakthrough of graphene. Their unique optical, electronic, and mechanical properties hold great potential for harnessing them as key components in novel applications for electronics and optoelectronics. Their atomic thickness and exposed huge surface even make them highly designable and manipulable, leading to the extensive application potentials. What's more, after acquiring the qualification for being the candidate for next-generation devices, the assembly of 2D materials monomers into mass or ordered structure is also of great importance, which will determine their ultimate industrialization. By designing the monomers and regulating their assembling behavior, the exploration of 2D materials toward the next-generation circuits can be spectacularly achieved. In this review, we will first overview the emerging 2D materials and then offer a clear guideline of varied physical and chemical strategies for tuning their properties. Furthermore, assembly strategies of 2D materials will also be included. Finally, challenges and outlooks in this promising field are featured on the basis of its current progress.


Posted Content
TL;DR: A comprehensive review on existing deep learning techniques for NER, including tagged NER corpora and off-the-shelf NER tools, and systematically categorizes existing works based on a taxonomy along three axes.
Abstract: Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization, and machine translation. Early NER systems got a huge success in achieving good performance with the cost of human engineering in designing domain-specific features and rules. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Journal ArticleDOI
TL;DR: In this article, a bulk-passivation strategy via incorporation of chlorine, to enlarge grains and reduce electronic disorder in mixed tin-lead low-bandgap perovskite absorber layers is reported.
Abstract: Multi-junction all-perovskite tandem solar cells are a promising choice for next-generation solar cells with high efficiency and low fabrication cost. However, the lack of high-quality low-bandgap perovskite absorber layers seriously hampers the development of efficient and stable two-terminal monolithic all-perovskite tandem solar cells. Here, we report a bulk-passivation strategy via incorporation of chlorine, to enlarge grains and reduce electronic disorder in mixed tin–lead low-bandgap (~1.25 eV) perovskite absorber layers. This enables the fabrication of efficient low-bandgap perovskite solar cells using thick absorber layers (~750 nm), which is a requisite for efficient tandem solar cells. Such improvement enables the fabrication of two-terminal all-perovskite tandem solar cells with a champion power conversion efficiency of 21% and steady-state efficiency of 20.7%. The efficiency is retained to 85% of its initial performance after 80 h of operation under continuous illumination. Two-terminal monolithic all-perovskite tandem solar cells are attractive due to their flexible nature and low-cost fabrication. Here the authors develop a process to obtain high-quality Sn–Pb perovskite thin films by incorporating chlorine. Such layers are employed to fabricate 20.7%-efficient tandem cells with 80 h operational stability.



Journal ArticleDOI
TL;DR: The increased density of states at the conduction band (CB) minimum in the monolayer BiO2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements.
Abstract: Vacancy-rich layered materials with good electron transfer property are of great interesting. Herein, full spectrum responsive vacancy-rich monolayer BiO2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO2-x are responsible for the enhanced photon responsibility and photo-absorption, which was confirmed by UV-vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO2-x, monolayer BiO2-x exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible and near-infrared light (NIR) irradiation attributed to the vacancy associates VBi-O‴ as confirmed by the positron annihilation spectra. The presence of VBi-O‴ defects in monolayer BiO2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient ultraviolet (UV), visible and NIR light responsive photocatalysts.

Journal ArticleDOI
TL;DR: The authors report an improved genome assembly of G. arboretum and resequencing of 243 diploid cotton accessions, which represents a major step toward understanding the evolution of the A genome of cotton.
Abstract: The ancestors of Gossypium arboreum and Gossypium herbaceum provided the A subgenome for the modern cultivated allotetraploid cotton. Here, we upgraded the G. arboreum genome assembly by integrating different technologies. We resequenced 243 G. arboreum and G. herbaceum accessions to generate a map of genome variations and found that they are equally diverged from Gossypium raimondii. Independent analysis suggested that Chinese G. arboreum originated in South China and was subsequently introduced to the Yangtze and Yellow River regions. Most accessions with domestication-related traits experienced geographic isolation. Genome-wide association study (GWAS) identified 98 significant peak associations for 11 agronomically important traits in G. arboreum. A nonsynonymous substitution (cysteine-to-arginine substitution) of GaKASIII seems to confer substantial fatty acid composition (C16:0 and C16:1) changes in cotton seeds. Resistance to fusarium wilt disease is associated with activation of GaGSTF9 expression. Our work represents a major step toward understanding the evolution of the A genome of cotton.