scispace - formally typeset
Search or ask a question

Showing papers by "Wuhan University published in 2016"


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
Theo Vos1, Christine Allen1, Megha Arora1, Ryan M Barber1  +696 moreInstitutions (260)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) as discussed by the authors was used to estimate the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015.

5,050 citations


Journal ArticleDOI
TL;DR: A general framework of DL for RS data is provided, and the state-of-the-art DL methods in RS are regarded as special cases of input-output data combined with various deep networks and tuning tricks.
Abstract: Deep-learning (DL) algorithms, which learn the representative and discriminative features in a hierarchical manner from the data, have recently become a hotspot in the machine-learning area and have been introduced into the geoscience and remote sensing (RS) community for RS big data analysis. Considering the low-level features (e.g., spectral and texture) as the bottom level, the output feature representation from the top level of the network can be directly fed into a subsequent classifier for pixel-based classification. As a matter of fact, by carefully addressing the practical demands in RS applications and designing the input?output levels of the whole network, we have found that DL is actually everywhere in RS data analysis: from the traditional topics of image preprocessing, pixel-based classification, and target recognition, to the recent challenging tasks of high-level semantic feature extraction and RS scene understanding.

1,625 citations


Journal ArticleDOI
Nicholas J Kassebaum1, Megha Arora1, Ryan M Barber1, Zulfiqar A Bhutta2  +679 moreInstitutions (268)
TL;DR: In this paper, the authors used the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015.

1,533 citations


Journal ArticleDOI
Jixiang Zhang1, Xiaoli Wang1, Vikash Vikash1, Qing Ye1, Dandan Wu1, Yu-Lan Liu1, Weiguo Dong1 
TL;DR: This review paper focuses on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins, ion channels and transporters, and modifying protein kinase and Ubiquitination/Proteasome System.
Abstract: It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System.

1,167 citations


Journal ArticleDOI
TL;DR: A rapidly excreted NIR-II fluorophore based on a synthetic 970-Da organic molecule (CH1055) that allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody and allowed precise image-guided tumour-removal surgery.
Abstract: Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (∼90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)—a clinically approved NIR-I dye—in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ∼4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery. A renally cleared, water-soluble dye emitting in the near-infrared-imaging (NIR)-II window outperforms a clinically approved NIR-I dye in the in vivo imaging of tumours and their nearby blood and lymphatic vasculatures.

1,160 citations


Journal ArticleDOI
TL;DR: The enormous health loss attributable to viral hepatitis, and the availability of effective vaccines and treatments, suggests an important opportunity to improve public health.

1,081 citations


Journal ArticleDOI
TL;DR: The most common non-communicable diseases, including ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and cancers (liver, stomach, and lung), contributed much more to YLLs in 2013 compared with 1990, and road injuries have become a top ten cause of death in all provinces in mainland China.

1,044 citations


Journal ArticleDOI
TL;DR: The results explain the outstanding sulfur problem during the historic London Fog formation and elucidate the chemical mechanism of severe haze in China, and suggest that effective haze mitigation is achievable by intervening in the sulfate formation process with NH3 and NO2 emission control measures.
Abstract: Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.

1,027 citations


Journal ArticleDOI
TL;DR: This paper constructs a special tree-based index structure and proposes a “Greedy Depth-first Search” algorithm to provide efficient multi-keyword ranked search over encrypted cloud data, which simultaneously supports dynamic update operations like deletion and insertion of documents.
Abstract: Due to the increasing popularity of cloud computing, more and more data owners are motivated to outsource their data to cloud servers for great convenience and reduced cost in data management. However, sensitive data should be encrypted before outsourcing for privacy requirements, which obsoletes data utilization like keyword-based document retrieval. In this paper, we present a secure multi-keyword ranked search scheme over encrypted cloud data, which simultaneously supports dynamic update operations like deletion and insertion of documents. Specifically, the vector space model and the widely-used TF $\;\times\;$ IDF model are combined in the index construction and query generation. We construct a special tree-based index structure and propose a “Greedy Depth-first Search” algorithm to provide efficient multi-keyword ranked search. The secure kNN algorithm is utilized to encrypt the index and query vectors, and meanwhile ensure accurate relevance score calculation between encrypted index and query vectors. In order to resist statistical attacks, phantom terms are added to the index vector for blinding search results. Due to the use of our special tree-based index structure, the proposed scheme can achieve sub-linear search time and deal with the deletion and insertion of documents flexibly. Extensive experiments are conducted to demonstrate the efficiency of the proposed scheme.

976 citations


Journal ArticleDOI
TL;DR: In this article, a review incorporating existing literature to understand the overall sorption behavior of heavy metals on biochar adsorbents is presented, and mathematical models are used to evaluate the efficiency of biochar at removing heavy metals.
Abstract: As a low-cost adsorbent, biochar can be used as a low-cost adsorbent for wastewater treatment, particularly with respect to treating heavy metals in wastewater. A number of studies have demonstrated effective removal of heavy metals from aqueous solutions by biochar and, in some cases, proven the superiority of biochars to activated carbons. Among several factors affecting the sorption ability of biochars, feedstock materials play a significant role. This review incorporates existing literature to understand the overall sorption behavior of heavy metals on biochar adsorbents. Depending on the biochar type, heavy metal can be removed by different mechanisms such as complexation, physical sorption, precipitation and electrostatic interactions. Mathematical sorption models can be used to understand the efficiency of biochar at removing heavy metals, and promote the application of biochar technology in water treatment.

Journal ArticleDOI
TL;DR: In this paper, a review gives an overview of fundamental aspects and recent research advances of heterogeneous photocatalytic CO2 conversion systems in the last 3 years, and the catalysts are categorized as one-step excitation semiconductor systems, one-stage excitation photosensitized semiconductor system, and two-step hybrid systems such as semiconductor heterojunction and Z-scheme systems.
Abstract: As a promising approach to achieving two objectives with one strategy, photocatalytic CO2 conversion for C1/C2 “solar fuels” production can provide a package solution to the current global warming and growing energy demand by using inexhaustible solar energy and increasing atmospheric CO2. Although numerous efforts have been made to enhance the CO2 conversion efficiency through developing photocatalysts and CO2 reduction systems in recent years, some challenges still remain in improving the activity and selectivity of the CO2 photoreduction reactions. This review gives an overview of fundamental aspects and recent research advances of heterogeneous photocatalytic CO2 conversion systems in the last 3 years, and the catalysts are categorized as one-step excitation semiconductor systems, one-step excitation photosensitized semiconductor systems, and two-step excitation hybrid systems such as semiconductor heterojunction and Z-scheme systems. Also, some suggestions are given for further confirming that the ca...

Journal ArticleDOI
Juanita A. Haagsma1, Nicholas Graetz1, Ian Bolliger1, Mohsen Naghavi1, Hideki Higashi1, Erin C Mullany1, Semaw Ferede Abera2, Jerry Puthenpurakal Abraham3, Koranteng Adofo4, Ubai Alsharif5, Emmanuel A. Ameh6, Walid Ammar, Carl Abelardo T. Antonio7, Lope H Barrero8, Tolesa Bekele9, Dipan Bose10, Alexandra Brazinova, Ferrán Catalá-López, Lalit Dandona1, Rakhi Dandona11, Paul I. Dargan12, Diego De Leo13, Louisa Degenhardt14, Sarah Derrett15, Samath D Dharmaratne16, Tim Driscoll17, Leilei Duan18, Sergey Petrovich Ermakov19, Farshad Farzadfar20, Valery L. Feigin21, Richard C. Franklin22, Belinda J. Gabbe23, Richard A. Gosselin24, Nima Hafezi-Nejad20, Randah R. Hamadeh25, Martha Híjar, Guoqing Hu26, Sudha Jayaraman27, Guohong Jiang, Yousef Khader28, Ejaz Ahmad Khan29, Sanjay Krishnaswami30, Chanda Kulkarni, Fiona Lecky31, Ricky Leung32, Raimundas Lunevicius33, Ronan A Lyons34, Marek Majdan, Amanda J. Mason-Jones35, Richard Matzopoulos36, Peter A. Meaney37, Wubegzier Mekonnen38, Ted R. Miller39, Charles Mock40, Rosana E. Norman41, Ricardo Orozco, Suzanne Polinder, Farshad Pourmalek42, Vafa Rahimi-Movaghar20, Amany H. Refaat43, David Rojas-Rueda, Nobhojit Roy44, David C. Schwebel45, Amira Shaheen46, Saeid Shahraz47, Vegard Skirbekk48, Kjetil Søreide49, Sergey Soshnikov, Dan J. Stein50, Bryan L. Sykes51, Karen M. Tabb52, Awoke Misganaw Temesgen, Eric Y. Tenkorang53, Alice Theadom21, Bach Xuan Tran54, Bach Xuan Tran55, Tommi Vasankari, Monica S. Vavilala40, Vasiliy Victorovich Vlassov56, Solomon Meseret Woldeyohannes57, Paul S. F. Yip58, Naohiro Yonemoto, Mustafa Z. Younis59, Chuanhua Yu60, Christopher J L Murray1, Theo Vos1 
Institute for Health Metrics and Evaluation1, College of Health Sciences, Bahrain2, Harvard University3, Kwame Nkrumah University of Science and Technology4, Charité5, Ahmadu Bello University6, University of the Philippines Manila7, Pontifical Xavierian University8, Madawalabu University9, World Bank10, Public Health Foundation of India11, Guy's and St Thomas' NHS Foundation Trust12, Griffith University13, University of New South Wales14, Massey University15, University of Peradeniya16, University of Sydney17, Chinese Center for Disease Control and Prevention18, Russian Academy of Sciences19, Tehran University of Medical Sciences20, Auckland University of Technology21, James Cook University22, Monash University23, University of California, San Francisco24, Arabian Gulf University25, Central South University26, Virginia Commonwealth University27, Jordan University of Science and Technology28, Health Services Academy29, Oregon Health & Science University30, University of Sheffield31, University at Albany, SUNY32, Aintree University Hospitals NHS Foundation Trust33, Swansea University34, University of York35, South African Medical Research Council36, Children's Hospital of Philadelphia37, Addis Ababa University38, Curtin University39, University of Washington40, Queensland University of Technology41, University of British Columbia42, Suez Canal University43, Karolinska Institutet44, University of Alabama at Birmingham45, An-Najah National University46, Tufts Medical Center47, Norwegian Institute of Public Health48, Stavanger University Hospital49, University of Cape Town50, University of California, Irvine51, University of Illinois at Urbana–Champaign52, St. John's University53, Johns Hopkins University54, Hanoi Medical University55, National Research University – Higher School of Economics56, University of Gondar57, University of Hong Kong58, Jackson State University59, Wuhan University60
TL;DR: An overview of injury estimates from the 2013 update of GBD is provided, with detailed information on incidence, mortality, DALYs and rates of change from 1990 to 2013 for 26 causes of injury, globally, by region and by country.
Abstract: Background The Global Burden of Diseases (GBD), Injuries, and Risk Factors study used the disability-adjusted life year (DALY) to quantify the burden of diseases, injuries, and risk factors. This paper provides an overview of injury estimates from the 2013 update of GBD, with detailed information on incidence, mortality, DALYs and rates of change from 1990 to 2013 for 26 causes of injury, globally, by region and by country. Methods Injury mortality was estimated using the extensive GBD mortality database, corrections for ill-defined cause of death and the cause of death ensemble modelling tool. Morbidity estimation was based on inpatient and outpatient data sets, 26 cause-of-injury and 47 nature-of-injury categories, and seven follow-up studies with patient-reported long-term outcome measures. Results In 2013, 973 million (uncertainty interval (UI) 942 to 993) people sustained injuries that warranted some type of healthcare and 4.8 million (UI 4.5 to 5.1) people died from injuries. Between 1990 and 2013 the global age-standardised injury DALY rate decreased by 31% (UI 26% to 35%). The rate of decline in DALY rates was significant for 22 cause-of-injury categories, including all the major injuries. Conclusions Injuries continue to be an important cause of morbidity and mortality in the developed and developing world. The decline in rates for almost all injuries is so prominent that it warrants a general statement that the world is becoming a safer place to live in. However, the patterns vary widely by cause, age, sex, region and time and there are still large improvements that need to be made.

Journal ArticleDOI
Li Li1, Jian Yao1, Renping Xie1, Menghan Xia1, Wei Zhang2 
22 Dec 2016-Sensors
TL;DR: Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas.
Abstract: In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas.

Journal ArticleDOI
Fengpeng An1, Guangpeng An, Qi An2, Vito Antonelli3  +226 moreInstitutions (55)
TL;DR: The Jiangmen Underground Neutrino Observatory (JUNO) as mentioned in this paper is a 20kton multi-purpose underground liquid scintillator detector with the determination of neutrino mass hierarchy (MH) as a primary physics goal.
Abstract: The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3–4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters ${\mathrm{sin}}^{2}{\theta }_{12}$, ${\rm{\Delta }}{m}_{21}^{2}$, and $| {\rm{\Delta }}{m}_{{ee}}^{2}| $ to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ∼5000 inverse-beta-decay events and ∼2000 all-flavor neutrino–proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ∼400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the ${\theta }_{23}$ mixing angle. Detection of the (7)Be and (8)B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with ${10}^{-5}\,{{\rm{eV}}}^{2}\lt {\rm{\Delta }}{m}_{41}^{2}\lt {10}^{-2}\,{{\rm{eV}}}^{2}$ and a sufficiently large mixing angle ${\theta }_{14}$ could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the $p\to {K}^{+}+\bar{ u }$ decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.

Journal ArticleDOI
TL;DR: The van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition are reported, showing high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications.
Abstract: Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications. Several two-dimensional materials have been synthesized to date, yet elemental materials, consisting of individual atomic species, are still scarce. Here, the authors synthesize few-layer, monocrystalline polygons of antimonene via van der Waals epitaxy growth.

Journal ArticleDOI
TL;DR: A novel fusion algorithm, named Gradient Transfer Fusion (GTF), based on gradient transfer and total variation (TV) minimization is proposed, which can keep both the thermal radiation and the appearance information in the source images.

Journal ArticleDOI
Sen Wang1, Ang Lu1, Lina Zhang1
TL;DR: In this paper, the widely used non-derivatizing cellulose solvents are summarized, including their dissolution mechanisms, with emphasis on the neat regenerated cellulose materials and the composite materials.

Journal ArticleDOI
TL;DR: In this article, the authors quantified maternal mortality throughout the world by underlying cause and age from 1990 to 2015 for ages 10-54 years by systematically compiling and processing all available data sources from 186 of 195 countries and territories.

Journal ArticleDOI
Haidong Wang1, Zulfiqar A Bhutta2, Zulfiqar A Bhutta3, Matthew M Coates1  +610 moreInstitutions (263)
TL;DR: The Global Burden of Disease 2015 Study provides an analytical framework to comprehensively assess trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time and decomposed the changes in under- 5 mortality to changes in SDI at the global level.

Journal ArticleDOI
31 Mar 2016-Nature
TL;DR: A new mechanism by which the antitumour response of mouse CD8+ T cells can be potentiated by modulating cholesterol metabolism is reported, which indicates ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.
Abstract: CD8(+) T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment. Reactivating the cytotoxicity of CD8(+) T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8(+) T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme, led to potentiated effector function and enhanced proliferation of CD8(+) but not CD4(+) T cells. This is due to the increase in the plasma membrane cholesterol level of CD8(+) T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8(+) T cells were better than wild-type CD8(+) T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.

Journal ArticleDOI
TL;DR: This work reviews the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts and some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza.
Abstract: Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies.

Journal ArticleDOI
TL;DR: The synthesis and characterization of a novel 3D pyrene-based COF (3D-Py-COF), by selectively choosing the geometry of the precursors and the connection patterns, and it is demonstrated that the incorporation of photoelectric units into 3D COFs can allow the resulting materials with interesting properties.
Abstract: The targeted synthesis of 3D COFs has been considered challenging, especially adopting new topologies and bearing photoelectric units. Herein, for the first time, we report the synthesis and characterization of a novel 3D pyrene-based COF (3D-Py-COF), by selectively choosing the geometry of the precursors and the connection patterns. Based on X-ray diffraction measurement and detailed simulations, 3D-Py-COF is proposed to adopt a two-fold interpenetrated pts topology, which has never been reported before. In addition, 3D-Py-COF has a narrow pore size distribution and high surface area and also features selective absorption of CO2 over N2. Interestingly, due to the existence of isolated pyrene units in the 3D framework, 3D-Py-COF is the first fluorescent 3D COF and can be used in explosive detection. Our results not only show it is possible to rationally design and synthesize 3D COFs with other topologies but also demonstrate that the incorporation of photoelectric units into 3D COFs can allow the resulting materials with interesting properties.

Journal ArticleDOI
Haidong Wang1, Timothy M. Wolock1, Austin Carter1, Grant Nguyen1  +497 moreInstitutions (214)
TL;DR: This report provides national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015.

Journal ArticleDOI
TL;DR: Among infertile women with the polycystic ovary syndrome, frozen-embryo transfer was associated with a higher rate of live birth, a lower risk of the ovarian hyperstimulation syndrome, and a higher risk of preeclampsia after the first transfer than was fresh-embyo transfer.
Abstract: BackgroundThe transfer of fresh embryos is generally preferred over the transfer of frozen embryos for in vitro fertilization (IVF), but some evidence suggests that frozen-embryo transfer may improve the live-birth rate and lower the rates of the ovarian hyperstimulation syndrome and pregnancy complications in women with the polycystic ovary syndrome. MethodsIn this multicenter trial, we randomly assigned 1508 infertile women with the polycystic ovary syndrome who were undergoing their first IVF cycle to undergo either fresh-embryo transfer or embryo cryopreservation followed by frozen-embryo transfer. After 3 days of embryo development, women underwent the transfer of up to two fresh or frozen embryos. The primary outcome was a live birth after the first embryo transfer. ResultsFrozen-embryo transfer resulted in a higher frequency of live birth after the first transfer than did fresh-embryo transfer (49.3% vs. 42.0%), for a rate ratio of 1.17 (95% confidence interval [CI], 1.05 to 1.31; P=0.004). Women w...

Journal ArticleDOI
19 Aug 2016-ACS Nano
TL;DR: In vitro study showed that PCCN could increase the intracellular O2 concentration and improve the reactive oxygen species generation in both hypoxic and normoxic environments upon light irradiation, and in vivo experiments indicated that P CCN had superior ability to overcome tumor hypoxia.
Abstract: Hypoxia, a typical feature of solid tumors, remarkably restricts the efficiency of photodynamic therapy (PDT). Here, a carbon nitride (C3N4)-based multifunctional nanocomposite (PCCN) for light-driven water splitting was used to solve this problem. Carbon dots were first doped with C3N4 to enhance its red region absorption because red light could be used to trigger the in vivo water splitting process. Then, a polymer containing a protoporphyrin photosensitizer, a polyethylene glycol segment, and a targeting Arg-Gly-Asp motif was synthesized and introduced to carbon-dot-doped C3N4 nanoparticles. In vitro study showed that PCCN, thus obtained, could increase the intracellular O2 concentration and improve the reactive oxygen species generation in both hypoxic and normoxic environments upon light irradiation. Cell viability assay demonstrated that PCCN fully reversed the hypoxia-triggered PDT resistance, presenting a satisfactory growth inhibition of cancer cells in an O2 concentration of 1%. In vivo experime...

Journal ArticleDOI
Yin Xu1, Jia Ai1, Hui Zhang1
TL;DR: Surface-bound, rather than free radicals generated by a surface catalyzed-redox cycle involving both Fe(III) and Cu(II), are postulated to be responsible for the mineralization of bisphenol A.

Journal ArticleDOI
TL;DR: Findings indicate that ring-like and core-shell nanostructures are promising structures for devising new and effective microwave absorbers.
Abstract: Using elliptical iron glycolate nanosheets as precursors, elliptical Fe3O4/C core-shell nanorings (NRs) [25 ± 10 nm in wall thickness, 150 ± 40 nm in length, and 1.6 ± 0.3 in long/short axis ratio] are synthesized via a one-pot hydrothermal route. The surface-poly(vinylpyrrolidone) (PVP)-protected-glucose reduction/carbonization/Ostwald ripening mechanism is responsible for Fe3O4/C NR formation. Increasing the glucose/precursor molar ratio can enhance carbon contents, causing a linear decrease in saturation magnetization (Ms) and coercivity (Hc). The Fe3O4/C NRs reveal enhanced low-frequency microwave absorption because of improvements to their permittivity and impedance matching. A maximum RL value of -55.68 dB at 3.44 GHz is achieved by Fe3O4/C NRs with 11.95 wt % C content at a volume fraction of 17 vol %. Reflection loss (RL) values (≤-20 dB) are observed at 2.11-10.99 and 16.5-17.26 GHz. Our research provides insights into the microwave absorption mechanism of elliptical Fe3O4/C core-shell NRs. Findings indicate that ring-like and core-shell nanostructures are promising structures for devising new and effective microwave absorbers.

Journal ArticleDOI
TL;DR: A spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV) that integrates the nuclear norm, TV regularization, and L1-norm together in a unified framework for HSI restoration.
Abstract: In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and $L_1$ -norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the $L_1$ -norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration.

Journal ArticleDOI
Hmwe H Kyu1, Christine Pinho1, Joseph Wagner1, Jonathan C Brown1  +199 moreInstitutions (118)
TL;DR: Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies and give guidance to policy makers in countries where more attention is needed.
Abstract: Importance The literature focuses on mortality among children younger than 5 years. Comparable information on nonfatal health outcomes among these children and the fatal and nonfatal burden of diseases and injuries among older children and adolescents is scarce. Objective To determine levels and trends in the fatal and nonfatal burden of diseases and injuries among younger children (aged Evidence Review Data from vital registration, verbal autopsy studies, maternal and child death surveillance, and other sources covering 14 244 site-years (ie, years of cause of death data by geography) from 1980 through 2013 were used to estimate cause-specific mortality. Data from 35 620 epidemiological sources were used to estimate the prevalence of the diseases and sequelae in the GBD 2013 study. Cause-specific mortality for most causes was estimated using the Cause of Death Ensemble Model strategy. For some infectious diseases (eg, HIV infection/AIDS, measles, hepatitis B) where the disease process is complex or the cause of death data were insufficient or unavailable, we used natural history models. For most nonfatal health outcomes, DisMod-MR 2.0, a Bayesian metaregression tool, was used to meta-analyze the epidemiological data to generate prevalence estimates. Findings Of the 7.7 (95% uncertainty interval [UI], 7.4-8.1) million deaths among children and adolescents globally in 2013, 6.28 million occurred among younger children, 0.48 million among older children, and 0.97 million among adolescents. In 2013, the leading causes of death were lower respiratory tract infections among younger children (905 059 deaths; 95% UI, 810 304-998 125), diarrheal diseases among older children (38 325 deaths; 95% UI, 30 365-47 678), and road injuries among adolescents (115 186 deaths; 95% UI, 105 185-124 870). Iron deficiency anemia was the leading cause of years lived with disability among children and adolescents, affecting 619 (95% UI, 618-621) million in 2013. Large between-country variations exist in mortality from leading causes among children and adolescents. Countries with rapid declines in all-cause mortality between 1990 and 2013 also experienced large declines in most leading causes of death, whereas countries with the slowest declines had stagnant or increasing trends in the leading causes of death. In 2013, Nigeria had a 12% global share of deaths from lower respiratory tract infections and a 38% global share of deaths from malaria. India had 33% of the world’s deaths from neonatal encephalopathy. Half of the world’s diarrheal deaths among children and adolescents occurred in just 5 countries: India, Democratic Republic of the Congo, Pakistan, Nigeria, and Ethiopia. Conclusions and Relevance Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies. Monitoring these trends over time is also key to understanding where interventions are having an impact. Proven interventions exist to prevent or treat the leading causes of unnecessary death and disability among children and adolescents. The findings presented here show that these are underused and give guidance to policy makers in countries where more attention is needed.