scispace - formally typeset
Open AccessJournal ArticleDOI

Cancer cells preferentially lose small chromosomes.

Reads0
Chats0
TLDR
It is found that solid and non‐solid cancers have markedly distinct whole‐chromosome aneuploidy signatures, which may underlie their fundamentally different etiologies and preferential chromosome loss is observed in both early and late stages of astrocytoma.
Abstract
Genetic and genomic aberrations are the primary cause of cancer. Chromosome missegregation leads to aneuploidy and provides cancer cells with a mechanism to lose tumor suppressor loci and gain extra copies of oncogenes. Using cytogenetic and array-based comparative genomic hybridization data, we analyzed numerical chromosome aneuploidy in 43,205 human tumors and found that 68% of solid tumors are aneuploid. In solid tumors, almost all chromosomes are more frequently lost than gained with chromosomes 7, 12 and 20 being the only exceptions with more frequent gains. Strikingly, small chromosomes are lost more readily than large ones, but no such inverse size correlation is observed with chromosome gains. Because of increasing levels of proteotoxic stress, chromosome gains have been shown to slow cell proliferation in a manner proportional to the number of extra gene copies gained. However, we find that the extra chromosome in trisomic tumors does not preferentially have a low gene copy number, suggesting that a proteotoxicity-mediated proliferation barrier is not sustained during tumor progression. Paradoxically, despite a bias toward chromosome loss, gains of chromosomes are a poor prognostic marker in ovarian adenocarcinomas. In addition, we find that solid and non-solid cancers have markedly distinct whole-chromosome aneuploidy signatures, which may underlie their fundamentally different etiologies. Finally, preferential chromosome loss is observed in both early and late stages of astrocytoma. Our results open up new avenues of enquiry into the role and nature of whole-chromosome aneuploidy in human tumors and will redirect modeling and genetic targeting efforts in patients.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Context is everything: aneuploidy in cancer

TL;DR: The context dependency of aneuploidy in cancer is explained and its clinical potential is discussed, which may have clinical relevance as a prognostic marker and as a potential therapeutic target.
Journal ArticleDOI

T Cell–Inflamed versus Non-T Cell–Inflamed Tumors: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection

TL;DR: To maximize the impact of immunotherapy drug development, pretreatment stratification of targets associated with either the T cell–inflated or noninflamed tumor microenvironment should be employed and biomarkers predictive of responsiveness to specific immunomodulatory therapies should guide therapy selection.
Journal ArticleDOI

Mosaicism in health and disease-clones picking up speed

TL;DR: Post-zygotic variation is an important confounder in medical genetic testing and a promising avenue for research: future studies could involve analyses of sorted and single cells from multiple tissue types to fully explore its potential.
References
More filters
Journal ArticleDOI

Hallmarks of cancer: the next generation.

TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
Journal ArticleDOI

The Human Genome Browser at UCSC

TL;DR: A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu.
Journal ArticleDOI

Comprehensive genomic characterization defines human glioblastoma genes and core pathways

Roger E. McLendon, +233 more
- 23 Oct 2008 - 
TL;DR: The interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated gliobeasts, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.
Journal ArticleDOI

Integrated genomic analyses of ovarian carcinoma

Debra A. Bell, +285 more
- 30 Jun 2011 - 
TL;DR: It is reported that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1,BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes.

Integrated genomic analyses of ovarian carcinoma

Daphne W. Bell, +261 more
TL;DR: The Cancer Genome Atlas project has analyzed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours as mentioned in this paper.
Related Papers (5)