scispace - formally typeset
Journal ArticleDOI

Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model

Reads0
Chats0
TLDR
In this article, a regional atmospheric climate model with multi-layer snow module (RACMO2) is forced at the lateral boundaries by global climate model (GCM) data to assess the future climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS).
Abstract
A regional atmospheric climate model with multi-layer snow module (RACMO2) is forced at the lateral boundaries by global climate model (GCM) data to assess the future climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS). Two different GCMs (ECHAM5 until 2100 and HadCM3 until 2200) and two different emission scenarios (A1B and E1) are used as forcing to capture a realistic range in future climate states. Simulated ice sheet averaged 2 m air temperature (T2m) increases (1.8–3.0 K in 2100 and 2.4–5.3 K in 2200), simultaneously and with the same magnitude as GCM simulated T2m. The SMB and its components increase in magnitude, as they are directly influenced by the temperature increase. Changes in atmospheric circulation around Antarctica play a minor role in future SMB changes. During the next two centuries, the projected increase in liquid water flux from rainfall and snowmelt, together 60–200 Gt year−1, will mostly refreeze in the snow pack, so runoff remains small (10–40 Gt year−1). Sublimation increases by 25–50 %, but remains an order of magnitude smaller than snowfall. The increase in snowfall mainly determines future changes in SMB on the AIS: 6–16 % in 2100 and 8–25 % in 2200. Without any ice dynamical response, this would result in an eustatic sea level drop of 20–43 mm in 2100 and 73–163 mm in 2200, compared to the twentieth century. Averaged over the AIS, a strong relation between \(\Updelta\)SMB and \(\Updelta\hbox{T}_{2{\rm m}}\) of 98 ± 5 Gt w.e. year−1 K−1 is found.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Oceanic Forcing of Antarctic Climate Change: A Study Using a Stretched-Grid Atmospheric General Circulation Model

TL;DR: In this paper, a variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic continent, showing that the prescribed sea surface condition anomalies have a very strong influence on the simulated climate change on the Antarctica continent, largely dominating the direct effect of the prescribed greenhouse gas concentration changes in the AGCM simulations.
Journal ArticleDOI

How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica

TL;DR: In this paper, the authors investigated the relationship between snowfall and accumulation at the surface of the Antarctic ice sheet and found that the local SMB is strongly influenced by synoptic upstream conditions.
Journal ArticleDOI

Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200

TL;DR: The contribution to sea level to 2200 from the grounded, mainland Antarctic Peninsula ice sheet (APIS) was calculated using an ice-sheet model initialized with a new technique computing ice fluxes based on observed surface velocities, altimetry and surface mass balance, and computing volume response using a linearized method.
References
More filters

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Book

Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Susan Solomon
TL;DR: In this article, the authors present a historical overview of climate change science, including changes in atmospheric constituents and radiative forcing, as well as changes in snow, ice, and frozen ground.
Journal ArticleDOI

Robust Responses of the Hydrological Cycle to Global Warming

TL;DR: In this paper, the authors examined some aspects of the hydrological cycle that are robust across the models, including the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and decrease in the horizontal sensible heat transport in the extratropics.
Related Papers (5)

Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

Peter T. Fretwell, +59 more
- 28 Feb 2013 -