scispace - formally typeset
Open AccessJournal ArticleDOI

Haploinsufficiency of HDAC4 Causes Brachydactyly Mental Retardation Syndrome, with Brachydactyly Type E, Developmental Delays, and Behavioral Problems

TLDR
Data presented here show that deletion or mutation of HDAC4 results in reduced expression of RAI1, which causes Smith-Magenis syndrome when haploinsufficient, providing a link to the overlapping findings in these disorders.
Abstract
Brachydactyly mental retardation syndrome (BDMR) is associated with a deletion involving chromosome 2q37. BDMR presents with a range of features, including intellectual disabilities, developmental delays, behavioral abnormalities, sleep disturbance, craniofacial and skeletal abnormalities (including brachydactyly type E), and autism spectrum disorder. To date, only large deletions of 2q37 have been reported, making delineation of a critical region and subsequent identification of candidate genes difficult. We present clinical and molecular analysis of six individuals with overlapping deletions involving 2q37.3 that refine the critical region, reducing the candidate genes from >20 to a single gene, histone deacetylase 4 (HDAC4). Driven by the distinct hand and foot anomalies and similar cognitive features, we identified other cases with clinical findings consistent with BDMR but without a 2q37 deletion, and sequencing of HDAC4 identified de novo mutations, including one intragenic deletion probably disrupting normal splicing and one intragenic insertion that results in a frameshift and premature stop codon. HDAC4 is a histone deacetylase that regulates genes important in bone, muscle, neurological, and cardiac development. Reportedly, Hdac4−/− mice have severe bone malformations resulting from premature ossification of developing bones. Data presented here show that deletion or mutation of HDAC4 results in reduced expression of RAI1, which causes Smith-Magenis syndrome when haploinsufficient, providing a link to the overlapping findings in these disorders. Considering the known molecular function of HDAC4 and the mouse knockout phenotype, taken together with deletion or mutation of HDAC4 in multiple subjects with BDMR, we conclude that haploinsufficiency of HDAC4 results in brachydactyly mental retardation syndrome.

read more

Citations
More filters
Journal ArticleDOI

Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders

TL;DR: The development of small-molecule HDAC inhibitors and their use in the laboratory, in preclinical models and in the clinic are highlighted.
Journal ArticleDOI

Epigenetic protein families: a new frontier for drug discovery

TL;DR: The key protein families that mediate epigenetic signalling through the acetylation and methylation of histones are reviewed, including histone deacetylases, protein methyltransferases, lysine demethylases, bromodomain-containing proteins and proteins that bind to methylated histones.
Journal ArticleDOI

Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism

F. Kyle Satterstrom, +201 more
- 06 Feb 2020 - 
TL;DR: The largest exome sequencing study of autism spectrum disorder (ASD) to date, using an enhanced analytical framework to integrate de novo and case-control rare variation, identifies 102 risk genes at a false discovery rate of 0.1 or less, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.
Journal ArticleDOI

Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting

TL;DR: An exhaustive review of the clinical genetics and research genetics literature in an attempt to collate all genes and recurrent genomic imbalances that have been implicated in the etiology of ASD shows that autism is not a single clinical entity but a behavioral manifestation of tens or perhaps hundreds of genetic and genomic disorders.
References
More filters
Journal ArticleDOI

22q11.2 deletion syndrome

TL;DR: The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease as mentioned in this paper.
Journal ArticleDOI

Transcriptional control of muscle development by myocyte enhancer factor-2 (mef2) proteins

TL;DR: The diverse functions of this family of transcription factors, the ways in which they are regulated, and their mechanisms of action are discussed.
Journal ArticleDOI

Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy

TL;DR: It is shown that class II HDACs are substrates for a stress-responsive kinase specific for conserved serines that regulate MEF2-HDAC interactions, and act as signal-responsive suppressors of the transcriptional program governing cardiac hypertrophy and heart failure.
Journal ArticleDOI

Three proteins define a class of human histone deacetylases related to yeast hda1p

TL;DR: Coimmunoprecipitation experiments indicate that these HDAC proteins are not components of the previously identified HDAC1 and HDAC2 NRD and mSin3A complexes, however, HDAC4 andHDAC5 associate with HDAC3 in vivo, which suggests that the human class II HDAC enzymes may function in cellular processes distinct from those of HDACs.
Related Papers (5)