scispace - formally typeset
Open AccessJournal ArticleDOI

Planck 2018 results. VI. Cosmological parameters

Nabila Aghanim, +232 more
- 01 Sep 2020 - 
- Vol. 641, pp 1-67
TLDR
In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract
We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Arguments against using h − 1 Mpc units in observational cosmology

TL;DR: In this article, the amplitude of the matter power spectrum was characterized in terms of the mass fluctuation in spheres of radius 12 Mpc, which is similar to the standard 6 Mpc parameter for low-redshift probes and cosmic microwave background data.
Journal ArticleDOI

The Impact of New d(p,\gamma)He3 Rates on Big Bang Nucleosynthesis

TL;DR: In this paper, the effect on the primordial abundance of D/H has been investigated in the presence of new measurements of the baryon density at the time of the Big Bang Nucleosynthesis.
Journal ArticleDOI

Trans-Planckian censorship and inflation in grand unified theories

Kai Schmitz
- 10 Apr 2020 - 
TL;DR: In this paper, it was shown that the trans-planckian censorship conjecture can be easily satisfied in D-term hybrid inflation (DHI), which is a well-motivated inflation scenario in the context of supersymmetric grand unification.
Journal ArticleDOI

Primordial Gravitational Wave Signals in Modified Cosmologies

TL;DR: In this paper, the primordial gravitational wave (PGW) spectrum was studied in the early universe prior to big bang nucleosynthesis and the detection prospects in current and future GW observatories were investigated.
Journal ArticleDOI

Machine Learning the Cosmic Curvature in a Model-independent Way

TL;DR: In this article, two nonlinear interpolating tools are used to reconstruct the Hubble parameter, one is the Artificial Neural Network (ANN) method, and the other is the Gaussian process (GP) method.
References
More filters
Related Papers (5)

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

Shadab Alam, +90 more

Planck 2015 results - XIII. Cosmological parameters

Peter A. R. Ade, +337 more