scispace - formally typeset
Open AccessJournal ArticleDOI

Planck 2018 results. VI. Cosmological parameters

Nabila Aghanim, +232 more
- 01 Sep 2020 - 
- Vol. 641, pp 1-67
TLDR
In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract
We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Planck 2018 results: XI. Polarized dust foregrounds

Yashar Akrami, +183 more
TL;DR: In this paper, a power-law fit to the angular power spectra of dust polarization at 353 GHz for six nested sky regions covering from 24 to 71 % of the sky is presented.
Journal ArticleDOI

Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM

TL;DR: In this paper, an improved determination of the Hubble constant (H0) from HST observations of 70 long-period Cepheids in the Large Magellanic Cloud was presented.
Journal ArticleDOI

In the realm of the Hubble tension - a review of solutions

TL;DR: In this paper, the authors present a thorough review of recent Hubble constant estimates and a summary of the proposed theoretical solutions, including early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity.
Journal ArticleDOI

Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory

Shadab Alam, +105 more
- 28 Apr 2021 - 
TL;DR: In this article, the authors present the cosmological implications from final measurements of clustering using galaxies, quasars, and Lyα forests from the completed SDSS lineage of experiments in large-scale structure.
References
More filters
Journal ArticleDOI

Effective Description of Higher-Order Scalar-Tensor Theories

TL;DR: In this paper, the dispersion relations for the linear perturbations around Minkowski and a cosmological background were derived for the Degenerate Higher-Order Scalar-Tensor (DHOST) theories.
Journal ArticleDOI

A 2 per cent Hubble constant measurement from standard sirens within 5 years

TL;DR: In this article, it was shown that LIGO and Virgo can be used to constrain the Hubble constant to a precision of Ω(sim 2 sigma) within 5 years and ℓ(sim 1 sigma within a decade.
Journal ArticleDOI

Cosmic microwave background constraints on the duration and timing of reionization from the south pole telescope

TL;DR: In this article, the authors used the South Pole Telescope (SPT) data to infer the evolution of the ionized fraction, x-bar_(e), and showed that the ionization fraction evolved relatively rapidly.
Journal ArticleDOI

Crossing the phantom divide with parametrized post-Friedmann dark energy

TL;DR: In this paper, a parameterized post-Friedmann description of cosmic accelerzation provides a simple but accurate description of multiple scalar field crossing models and provides a well-controlled approximation for a wide range of smooth dark energy models.
Related Papers (5)

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

Shadab Alam, +90 more

Planck 2015 results - XIII. Cosmological parameters

Peter A. R. Ade, +337 more