scispace - formally typeset
Open AccessJournal ArticleDOI

Rapamycins: mechanism of action and cellular resistance.

TLDR
The conserved TOR signaling pathways, conceptual basis for tumor selectivity, and the mechanisms of resistance to this class of antitumor agent are reviewed.
Abstract
Rapamycins are macrocyclic lactones that possess immunosuppressive, antifungal and antitumor properties. The parent compound, rapamycin, is approved as an immunosup-pressive agent for preventing rejection in patients receiving organ transplantation. Two analogues, CCI-779 and RAD001 are currently being investigated as anticancer agents. Rapamycins first bind a cyclophilin FKBP12, and this complex binds and inhibits the function of mTOR (mammalian target of rapamycin) a serine/threonine (Ser/Thr) kinase with homology to phosphatidylinositol 3' kinase. Currently, as mTOR is the only identified target, this places rapamycins in a unique position of being the most selective kinase inhibitor known. Consequently these agents have been powerful tools in elucidating the role of mTOR in cellular growth, proliferation, survival and tumorigenesis. Increasing evidence suggests that mTOR acts as a central controller sensing cellular environment (nutritional status or mitogenic stimulation) and regulating translation initiation through the eukaryotic initiation factor 4E, and ribosomal p70 S6 kinase pathways. Here we review the conserved TOR signaling pathways, conceptual basis for tumor selectivity, and the mechanisms of resistance to this class of antitumor agent.

read more

Citations
More filters
Journal ArticleDOI

Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease.

TL;DR: This work shows that mammalian target of rapamycin (mTOR) is sequestered in polyglutamine aggregates in cell models, transgenic mice and human brains, and provides proof-of-principle for the potential of inducing autophagy to treat Huntington disease.
Journal ArticleDOI

The tor pathway: a target for cancer therapy

TL;DR: In addition to the role of rapamycin as an immune suppressant, emerging data indicate that genetic and metabolic changes accompanying malignant transformation might cause hypersensitivity to TOR inhibition.
Journal ArticleDOI

Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition.

TL;DR: This study provides a mechanistic basis for enhancing mTOR-targeted cancer therapy by combining an mTOR inhibitor with a PI3K or Akt inhibitor and shows that rapamycin combined with LY294002 exhibited enhanced inhibitory effects on the growth and colony formation of cancer cells.
Journal ArticleDOI

The TSC-mTOR Signaling Pathway Regulates the Innate Inflammatory Response

TL;DR: It is shown that the tuberous sclerosis complex-mammalian target of rapamycin (TSC-mTOR) pathway regulated inflammatory responses after bacterial stimulation in monocytes, macrophages, and primary dendritic cells, and protected genetically susceptible mice against lethal Listeria monocytogenes infection.
References
More filters
Journal ArticleDOI

Mammalian MAP kinase signalling cascades

TL;DR: Recent studies have begun to shed light on the physiological functions of MAPK cascades in the control of gene expression, cell proliferation and programmed cell death.
Journal ArticleDOI

mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery

TL;DR: It is reported that mTOR forms a stoichiometric complex with raptor, an evolutionarily conserved protein with at least two roles in the mTOR pathway that through its association with mTOR regulates cell size in response to nutrient levels.
Journal ArticleDOI

TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling

TL;DR: It is shown that TSC1–TSC2 inhibits the p70 ribosomal protein S6 kinase 1 and activates the eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translational initiation) and these functions are mediated by inhibition of the mammalian target of rapamycin (mTOR).
Journal ArticleDOI

Cell cycle checkpoint signaling through the ATM and ATR kinases

TL;DR: These checkpoints contain, as their most proximal signaling elements, sensor proteins that scan chromatin for partially replicated DNA, DNA strand breaks, or other abnormalities, and translate these DNA-derived stimuli into biochemical signals that modulate the functions of specific downstream target proteins.
Related Papers (5)