scispace - formally typeset
Search or ask a question

Showing papers on "Base pair published in 2020"


Journal ArticleDOI
26 Jun 2020-Science
TL;DR: Cryo–electron microscopy structures of the SARS-CoV-2 RdRp provide insights into the mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.
Abstract: The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the cryo-electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.8-angstrom resolution and in complex with a 50-base template-primer RNA and remdesivir at 2.5-angstrom resolution. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp, where remdesivir is covalently incorporated into the primer strand at the first replicated base pair, and terminates chain elongation. Our structures provide insights into the mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.

898 citations


Journal ArticleDOI
Yuhang Dong1, Chi Yao1, Yi Zhu1, Lu Yang1, Dan Luo2, Dayong Yang1 
TL;DR: It is envisioned that branched DNA functional materials can not only enrich the DNA nanotechnology by ingenious design and synthesis but also promote the development of interdisciplinary fields in chemistry, biology, medicine, and engineering, ultimately addressing the growing demands on biological and medical-related applications in the real world.
Abstract: DNA is traditionally known as a central genetic biomolecule in living systems. From an alternative perspective, DNA is a versatile molecular building-block for the construction of functional materials, in particular biomaterials, due to its intrinsic biological attributes, molecular recognition capability, sequence programmability, and biocompatibility. The topologies of DNA building-blocks mainly include linear, circular, and branched types. Branched DNA recently has been extensively employed as a versatile building-block to synthesize new biomaterials, and an assortment of promising applications have been explored. In this review, we discuss the progress on DNA functional materials assembled from branched DNA. We first briefly introduce the background information on DNA molecules and sketch the development history of DNA functional materials constructed from branched DNA. In the second part, the synthetic strategies of branched DNA as building-blocks are categorized into base-pairing assembly and chemical bonding. In the third part, construction strategies for the branched DNA-based functional materials are comprehensively summarized including tile-mediated assembly, DNA origami, dynamic assembly, and hybrid assembly. In the fourth part, applications including diagnostics, protein engineering, drug and gene delivery, therapeutics, and cell engineering are demonstrated. In the end, an insight into the challenges and future perspectives is provided. We envision that branched DNA functional materials can not only enrich the DNA nanotechnology by ingenious design and synthesis but also promote the development of interdisciplinary fields in chemistry, biology, medicine, and engineering, ultimately addressing the growing demands on biological and medical-related applications in the real world.

228 citations


Journal ArticleDOI
TL;DR: Characterization of one novel RNA pair bound by both chaperones revealed that while Hfq is required for RNA sponge-mediated downregulation of the sRNA, ProQ can inhibit this regulation.

144 citations


Journal ArticleDOI
TL;DR: A genome-wide RNA decay pathway that reduces the half-lives of mRNAs based on overall 3' UTR structure formed by base pairing is characterized, which enables cells to selectively regulate coding and noncoding RNAs.

124 citations


Journal ArticleDOI
TL;DR: The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.
Abstract: The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.

117 citations


Journal ArticleDOI
TL;DR: Evaluation of a library of nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV to evaluate whether they can evade the viral exonuclease activity.

97 citations


Posted ContentDOI
09 Apr 2020-bioRxiv
TL;DR: The structures of the SARS-CoV-2 RdRp provide critical insights into the working mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.
Abstract: The pandemic of Corona Virus Disease 2019 (COVID-19) caused by SARS-CoV-2 has become a global crisis. The replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp), a direct target of the antiviral drug, Remdesivir. Here we report the structure of the SARS-CoV-2 RdRp either in the apo form or in complex with a 50-base template-primer RNA and Remdesivir at a resolution range of 2.5-2.8 A. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp where Remdesivir is incorporated into the first replicated base pair and terminates the chain elongation. Our structures provide critical insights into the working mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.

90 citations


Journal ArticleDOI
TL;DR: An updated protocol for single-stranded sequencing library preparation suitable for highly degraded DNA from ancient remains or other sources is presented, which can be performed manually or in an automated fashion.
Abstract: It has been shown that highly fragmented DNA is most efficiently converted into DNA libraries for sequencing if both strands of the DNA fragments are processed independently We present an updated protocol for library preparation from single-stranded DNA, which is based on the splinted ligation of an adapter oligonucleotide to the 3′ ends of single DNA strands, the synthesis of a complementary strand using a DNA polymerase and the addition of a 5′ adapter via blunt-end ligation The efficiency of library preparation is determined individually for each sample using a spike-in oligonucleotide The whole workflow, including library preparation, quantification and amplification, requires two work days for up to 16 libraries Alternatively, we provide documentation and electronic protocols enabling automated library preparation of 96 samples in parallel on a Bravo NGS Workstation (Agilent Technologies) After library preparation, molecules with uninformative short inserts (shorter than ~30−35 base pairs) can be removed by polyacrylamide gel electrophoresis if desired Here the authors describe an updated protocol for single-stranded sequencing library preparation suitable for highly degraded DNA from ancient remains or other sources The procedure can be performed manually or in an automated fashion

81 citations


Journal ArticleDOI
TL;DR: DO is capable of displacing EB and AO from their binding site in ctDNA; hence, it can be concluded that DO and AN are able to intercalate into the base pairs of ct DNA in binary and ternary systems.

73 citations


Journal ArticleDOI
TL;DR: This study has developed methodology to site-specifically conjugate oligonucleotides to recombinant Cas9 protein containing a genetically encoded noncanonical amino acid with orthogonal chemical reactivity, markedly increasing homology-directed repair efficiency in both human cell culture and mouse zygotes.
Abstract: Site-specific chemical conjugation of proteins can enhance their therapeutic and diagnostic utility but has seldom been applied to CRISPR-Cas9, which is a rapidly growing field with great therapeutic potential. The low efficiency of homology-directed repair remains a major hurdle in CRISPR-Cas9–mediated precise genome editing, which is limited by low concentration of donor DNA template at the cleavage site. In this study, we have developed methodology to site-specifically conjugate oligonucleotides to recombinant Cas9 protein containing a genetically encoded noncanonical amino acid with orthogonal chemical reactivity. The Cas9-oligonucleotide conjugates recruited an unmodified donor DNA template to the target site through base pairing, markedly increasing homology-directed repair efficiency in both human cell culture and mouse zygotes. These chemically modified Cas9 mutants provide an additional tool, one that is complementary to chemically modified nucleic acids, for improving the utility of CRISPR-Cas9–based genome-editing systems.

69 citations


Journal ArticleDOI
TL;DR: The authors provide the structure of the GTA of Rhodobacter capsulatus ( Rc GTA), which resembles a tailed phage, and describe the conformational changes required for DNA ejection.
Abstract: Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.

Journal ArticleDOI
TL;DR: The rational design strategy and the easy enzymatic synthetic method presented here provide a versatile way to develop a variety of metal-responsive allosteric DNA materials, including molecular machines and logic circuits, based on metal-mediated artificial base pairing.
Abstract: Allosteric regulation is gaining increasing attention as a basis for the production of stimuli-responsive materials in many research areas including DNA nanotechnology. We expected that metal-mediated artificial base pairs, consisting of ligand-type nucleotides and a bridging metal ion, could serve as allosteric units that regulate the function of DNA molecules. In this study, we established a rational design strategy for developing CuII-responsive allosteric DNAzymes by incorporating artificial hydroxypyridone ligand-type nucleotides (H) that form a CuII-mediated base pair (H-CuII-H). We devised a new enzymatic method using a standard DNA polymerase and a ligase to prepare DNA strands containing H nucleotides. Previously reported DNAzymes were modified by introducing a H-H pair into the stem region, and the stem-loop sequences were altered so that the structure becomes catalytically inactive in the absence of CuII ions. The formation of a H-CuII-H base pair triggers intrastrand transformation from the inactive to the active structure, enabling allosteric regulation of the DNAzyme activity in response to CuII ions. The activity of the H-modified DNAzyme was reversibly switched by the addition and removal of CuII ions under isothermal conditions. Similarly, by incorporating a H-CuII-H pair into an in vitro-selected AgI-dependent DNAzyme, we have developed a DNAzyme that exhibits an AND logic-gate response to CuII and AgI ions. The rational design strategy and the easy enzymatic synthetic method presented here provide a versatile way to develop a variety of metal-responsive allosteric DNA materials, including molecular machines and logic circuits, based on metal-mediated artificial base pairing.

Journal ArticleDOI
TL;DR: The UBPs developed by three research teams are described and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis is described.
Abstract: Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.

Journal ArticleDOI
TL;DR: It is proposed that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.
Abstract: Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e.: the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.

Journal ArticleDOI
TL;DR: It is shown that poly(thymine) self-associates into antiparallel, right-handed duplexes in the presence of melamine, a small molecule that presents a triplicate set of the hydrogen-bonding face of adenine.
Abstract: The diversity of DNA duplex structures is limited by a binary pair of hydrogen-bonded motifs. Here we show that poly(thymine) self-associates into antiparallel, right-handed duplexes in the presence of melamine, a small molecule that presents a triplicate set of the hydrogen-bonding face of adenine. X-ray crystallography shows that in the complex two poly(thymine) strands wrap around a helical column of melamine, which hydrogen bonds to thymine residues on two of its three faces. The mechanical strength of the thymine–melamine–thymine triplet surpasses that of adenine–thymine base pairs, which enables a sensitive detection of melamine at 3 pM. The poly(thymine)–melamine duplex is orthogonal to native DNA base pairing and can undergo strand displacement without the need for overhangs. Its incorporation into two-dimensional grids and hybrid DNA–small-molecule polymers highlights the poly(thymine)–melamine duplex as an additional tool for DNA nanotechnology. Melamine is shown to associate with two poly(thymine) strands, forming antiparallel duplexes that can be used for the dynamic assembly of DNA-based nanostructures.

Journal ArticleDOI
21 Oct 2020-Nature
TL;DR: Determination of high-resolution X-ray structures, combined with nuclear magnetic resonance measurements and structural analyses, showed that many of the DNA mismatches that increase binding induce distortions that are similar to those induced by protein binding—thus prepaying some of the energetic cost incurred from deforming the DNA.
Abstract: Transcription factors recognize specific genomic sequences to regulate complex gene-expression programs. Although it is well-established that transcription factors bind to specific DNA sequences using a combination of base readout and shape recognition, some fundamental aspects of protein-DNA binding remain poorly understood1,2. Many DNA-binding proteins induce changes in the structure of the DNA outside the intrinsic B-DNA envelope. However, how the energetic cost that is associated with distorting the DNA contributes to recognition has proven difficult to study, because the distorted DNA exists in low abundance in the unbound ensemble3-9. Here we use a high-throughput assay that we term SaMBA (saturation mismatch-binding assay) to investigate the role of DNA conformational penalties in transcription factor-DNA recognition. In SaMBA, mismatched base pairs are introduced to pre-induce structural distortions in the DNA that are much larger than those induced by changes in the Watson-Crick sequence. Notably, approximately 10% of mismatches increased transcription factor binding, and for each of the 22 transcription factors that were examined, at least one mismatch was found that increased the binding affinity. Mismatches also converted non-specific sites into high-affinity sites, and high-affinity sites into 'super sites' that exhibit stronger affinity than any known canonical binding site. Determination of high-resolution X-ray structures, combined with nuclear magnetic resonance measurements and structural analyses, showed that many of the DNA mismatches that increase binding induce distortions that are similar to those induced by protein binding-thus prepaying some of the energetic cost incurred from deforming the DNA. Our work indicates that conformational penalties are a major determinant of protein-DNA recognition, and reveals mechanisms by which mismatches can recruit transcription factors and thus modulate replication and repair activities in the cell10,11.

Journal ArticleDOI
TL;DR: Terahertz stimulus at a characteristic frequency can serve as an efficient, nonthermal, and long-range method to accelerate the unwinding process of DNA duplexes and potentially provide a promising application of terahertz technology for the rapid detection of nucleic acids, biomedicine, and therapy.
Abstract: Unwinding the double helix of the DNA molecule is the basis of gene duplication and gene editing, and the acceleration of this unwinding process is crucial to the rapid detection of genetic information. Based on the unwinding of six-base-pair DNA duplexes, we demonstrate that a terahertz stimulus at a characteristic frequency (44.0 THz) can serve as an efficient, nonthermal, and long-range method to accelerate the unwinding process of DNA duplexes. The average speed of the unwinding process increased by 20 times at least, and its temperature was significantly reduced. The mechanism was revealed to be the resonance between the terahertz stimulus and the vibration of purine connected by the weak hydrogen bond and the consequent break in hydrogen bond connections between these base pairs. Our findings potentially provide a promising application of terahertz technology for the rapid detection of nucleic acids, biomedicine, and therapy.

Journal ArticleDOI
TL;DR: This review describes the means by which nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
Abstract: Fluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).

Journal ArticleDOI
TL;DR: A CRISPR–Cas12a that can induce mutations in target DNA sequences in a highly specific and effective manner by partially substituting the (cr)RNA with DNA to change the energy potential of base pairing to the target DNA is developed.
Abstract: The CRISPR-Cas9 system is widely used for target-specific genome engineering. CRISPR-Cas12a (Cpf1) is one of the CRISPR effectors that controls target genes by recognizing thymine-rich protospacer adjacent motif (PAM) sequences. Cas12a has a higher sensitivity to mismatches in the guide RNA than does Cas9; therefore, off-target sequence recognition and cleavage are lower. However, it tolerates mismatches in regions distant from the PAM sequence (TTTN or TTN) in the protospacer, and off-target cleavage issues may become more problematic when Cas12a activity is improved for therapeutic purposes. Therefore, we investigated off-target cleavage by Cas12a and modified the Cas12a (cr)RNA to address the off-target cleavage issue. We developed a CRISPR-Cas12a that can induce mutations in target DNA sequences in a highly specific and effective manner by partially substituting the (cr)RNA with DNA to change the energy potential of base pairing to the target DNA. A model to explain how chimeric (cr)RNA guided CRISPR-Cas12a and SpCas9 nickase effectively work in the intracellular genome is suggested. Chimeric guide-based CRISPR- Cas12a genome editing with reduced off-target cleavage, and the resultant, increased safety has potential for therapeutic applications in incurable diseases caused by genetic mutations.

Journal ArticleDOI
TL;DR: NMR studies reveal that a recently discovered small-molecule inhibitor of HIV-1 RNA packaging that appears to function by stabilizing the structure of the leader binds directly to the [UUUU]:[GGAG] helix.
Abstract: Selective packaging of the HIV-1 genome during virus assembly is mediated by interactions between the dimeric 5ʹ-leader of the unspliced viral RNA and the nucleocapsid (NC) domains of a small number of assembling viral Gag polyproteins. Here, we show that the dimeric 5′-leader contains more than two dozen NC binding sites with affinities ranging from 40 nM to 1.4 μM, and that all high-affinity sites (Kd ≲ 400 nM) reside within a ∼150-nt region of the leader sufficient to promote RNA packaging (core encapsidation signal, ΨCES). The four initial binding sites with highest affinity reside near two symmetrically equivalent three-way junction structures. Unlike the other high-affinity sites, which bind NC with exothermic energetics, binding to these sites occurs endothermically due to concomitant unwinding of a weakly base-paired [UUUU]:[GGAG] helical element. Mutations that stabilize base pairing within this element eliminate NC binding to this site and severely impair RNA packaging into virus-like particles. NMR studies reveal that a recently discovered small-molecule inhibitor of HIV-1 RNA packaging that appears to function by stabilizing the structure of the leader binds directly to the [UUUU]:[GGAG] helix. Our findings suggest a sequential NC binding mechanism for Gag-genome assembly and identify a potential RNA Achilles’ heel to which HIV therapeutics may be targeted.

Journal ArticleDOI
TL;DR: A crystal structure of the DNA-binding domain of a model ASO-binding protein PC4, in complex with a full PS 2'-OMe DNA gapmer ASO, is reported, believed to be the first structure of a complex between a protein and fully PS nucleic acid.
Abstract: The phosphorothioate backbone modification (PS) is one of the most widely used chemical modifications for enhancing the drug-like properties of nucleic acid-based drugs, including antisense oligonucleotides (ASOs). PS-modified nucleic acid therapeutics show improved metabolic stability from nuclease-mediated degradation and exhibit enhanced interactions with plasma, cell-surface, and intracellular proteins, which facilitates their tissue distribution and cellular uptake in animals. However, little is known about the structural basis of the interactions of PS nucleic acids with proteins. Here, we report a crystal structure of the DNA-binding domain of a model ASO-binding protein PC4, in complex with a full PS 2'-OMe DNA gapmer ASO. To our knowledge this is the first structure of a complex between a protein and fully PS nucleic acid. Each PC4 dimer comprises two DNA-binding interfaces. In the structure one interface binds the 5'-terminal 2'-OMe PS flank of the ASO, while the other interface binds the regular PS DNA central part in the opposite polarity. As a result, the ASO forms a hairpin-like structure. ASO binding also induces the formation of a dimer of dimers of PC4, which is stabilized by base pairing between homologous regions of the ASOs bound by each dimer of PC4. The protein interacts with the PS nucleic acid through a network of electrostatic and hydrophobic interactions, which provides insights into the origins for the enhanced affinity of PS for proteins. The importance of these contacts was further confirmed in a NanoBRET binding assay using a Nano luciferase tagged PC4 acting as the BRET donor, to a fluorescently conjugated ASO acting as the BRET acceptor. Overall, our results provide insights into the molecular forces that govern the interactions of PS ASOs with cellular proteins and provide a potential model for how these interactions can template protein-protein interactions causative of cellular toxicity.

Journal ArticleDOI
19 Feb 2020-Nature
TL;DR: The kinetic coordination of prespacer precursor selection and PAM trimming is demonstrated, providing insight into the mechanisms that underlie the integration of functional spacers in the CRISPR loci.
Abstract: CRISPR-Cas immunity protects prokaryotes against invading genetic elements1. It uses the highly conserved Cas1-Cas2 complex to establish inheritable memory (spacers)2-5. How Cas1-Cas2 acquires spacers from foreign DNA fragments (prespacers) and integrates them into the CRISPR locus in the correct orientation is unclear6,7. Here, using the high spatiotemporal resolution of single-molecule fluorescence, we show that Cas1-Cas2 selects precursors of prespacers from DNA in various forms-including single-stranded DNA and partial duplexes-in a manner that depends on both the length of the DNA strand and the presence of a protospacer adjacent motif (PAM) sequence. We also identify DnaQ exonucleases as enzymes that process the Cas1-Cas2-loaded prespacer precursors into mature prespacers of a suitable size for integration. Cas1-Cas2 protects the PAM sequence from maturation, which results in the production of asymmetrically trimmed prespacers and the subsequent integration of spacers in the correct orientation. Our results demonstrate the kinetic coordination of prespacer precursor selection and PAM trimming, providing insight into the mechanisms that underlie the integration of functional spacers in the CRISPR loci.

Journal ArticleDOI
30 Oct 2020-Mbio
TL;DR: The detection and characterization of large-scaleRNA secondary structure in the genome of SARS-CoV-2 indicate an extraordinary and unsuspected degree of genome structural organization; this could be effectively visualized through a newly developed contour plotting method that displays positions, structural features, and conservation of RNA secondary structure between related viruses.
Abstract: The ultimate outcome of the coronavirus disease 2019 (COVID-19) pandemic is unknown and is dependent on a complex interplay of its pathogenicity, transmissibility, and population immunity. In the current study, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated for the presence of large-scale internal RNA base pairing in its genome. This property, termed genome-scale ordered RNA structure (GORS) has been previously associated with host persistence in other positive-strand RNA viruses, potentially through its shielding effect on viral RNA recognition in the cell. Genomes of SARS-CoV-2 were remarkably structured, with minimum folding energy differences (MFEDs) of 15%, substantially greater than previously examined viruses such as hepatitis C virus (HCV) (MFED of 7 to 9%). High MFED values were shared with all coronavirus genomes analyzed and created by several hundred consecutive energetically favored stem-loops throughout the genome. In contrast to replication-associated RNA structure, GORS was poorly conserved in the positions and identities of base pairing with other sarbecoviruses-even similarly positioned stem-loops in SARS-CoV-2 and SARS-CoV rarely shared homologous pairings, indicative of more rapid evolutionary change in RNA structure than in the underlying coding sequences. Sites predicted to be base paired in SARS-CoV-2 showed less sequence diversity than unpaired sites, suggesting that disruption of RNA structure by mutation imposes a fitness cost on the virus that is potentially restrictive to its longer evolution. Although functionally uncharacterized, GORS in SARS-CoV-2 and other coronaviruses represents important elements in their cellular interactions that may contribute to their persistence and transmissibility.IMPORTANCE The detection and characterization of large-scale RNA secondary structure in the genome of SARS-CoV-2 indicate an extraordinary and unsuspected degree of genome structural organization; this could be effectively visualized through a newly developed contour plotting method that displays positions, structural features, and conservation of RNA secondary structure between related viruses. Such RNA structure imposes a substantial evolutionary cost; paired sites showed greater restriction in diversity and represent a substantial additional constraint in reconstructing its molecular epidemiology. Its biological relevance arises from previously documented associations between possession of structured genomes and persistence, as documented for HCV and several other RNA viruses infecting humans and mammals. Shared properties potentially conferred by large-scale structure in SARS-CoV-2 include increasing evidence for prolonged infections and induced immune dysfunction that prevents development of protective immunity. The findings provide an additional element to cellular interactions that potentially influences the natural history of SARS-CoV-2, its pathogenicity, and its transmission.

Journal ArticleDOI
27 May 2020-Nature
TL;DR: A dynamic switch is revealed—based on the rearrangement of a single base pair in the miRNA–mRNA duplex—that elongates a weak five- base-pair seed to a complete seven-base- Pair seed, leading to enhanced repression of the target mRNA in cells, revealing the importance of this miRNA-mRNA structure.
Abstract: MicroRNAs (miRNAs) regulate the levels of translation of messenger RNAs (mRNAs). At present, the major parameter that can explain the selection of the target mRNA and the efficiency of translation repression is the base pairing between the ‘seed’ region of the miRNA and its counterpart mRNA1. Here we use R1ρ relaxation-dispersion nuclear magnetic resonance2 and molecular simulations3 to reveal a dynamic switch—based on the rearrangement of a single base pair in the miRNA–mRNA duplex—that elongates a weak five-base-pair seed to a complete seven-base-pair seed. This switch also causes coaxial stacking of the seed and supplementary helix fitting into human Argonaute 2 protein (Ago2), reminiscent of an active state in prokaryotic Ago4,5. Stabilizing this transient state leads to enhanced repression of the target mRNA in cells, revealing the importance of this miRNA–mRNA structure. Our observations tie together previous findings regarding the stepwise miRNA targeting process from an initial ‘screening’ state to an ‘active’ state, and unveil the role of the RNA duplex beyond the seed in Ago2. Repression of a messenger RNA by a cognate microRNA depends not only on complementary base pairing, but also on the rearrangement of a single base pair, producing a conformation that fits better within the human Ago2 protein.

Posted ContentDOI
21 Sep 2020-bioRxiv
TL;DR: It is observed that negative superhelical stress induces local variation in the canonical B-form DNA structure by introducing kinks and defects that affect global minicircle structure and flexibility, and it is shown that the energetics of triplex formation is governed by a delicate balance between electrostatics and bonding interactions.
Abstract: In the cell, DNA is arranged into highly-organised and topologically-constrained (supercoiled) structures. It remains unclear how this supercoiling affects the detailed double-helical structure of DNA, largely because of limitations in spatial resolution of the available biophysical tools. Here, we overcome these limitations, by a combination of atomic force microscopy (AFM) and atomistic molecular dynamics (MD) simulations, to resolve structures of negatively-supercoiled DNA minicircles at base-pair resolution. We observe that negative superhelical stress induces local variation in the canonical B-form DNA structure by introducing kinks and defects that affect global minicircle structure and flexibility. We probe how these local and global conformational changes affect DNA interactions through the binding of triplex-forming oligonucleotides to DNA minicircles. We show that the energetics of triplex formation is governed by a delicate balance between electrostatics and bonding interactions. Our results provide mechanistic insight into how DNA supercoiling can affect molecular recognition, that may have broader implications for DNA interactions with other molecular species.

Journal ArticleDOI
TL;DR: This work addresses the problem of accurate structural validation of DNA objects in solution with cryo-EM based methodologies by taking into account structural fluctuations, and presents molecular-dynamics-based methods for building pseudo-atomic models in a semi-automated fashion.
Abstract: The methods of DNA nanotechnology enable the rational design of custom shapes that self-assemble in solution from sets of DNA molecules. DNA origami, in which a long template DNA single strand is folded by many short DNA oligonucleotides, can be employed to make objects comprising hundreds of unique DNA strands and thousands of base pairs, thus in principle providing many degrees of freedom for modelling complex objects of defined 3D shapes and sizes. Here, we address the problem of accurate structural validation of DNA objects in solution with cryo-EM based methodologies. By taking into account structural fluctuations, we can determine structures with improved detail compared to previous work. To interpret the experimental cryo-EM maps, we present molecular-dynamics-based methods for building pseudo-atomic models in a semi-automated fashion. Among other features, our data allows discerning details such as helical grooves, single-strand versus double-strand crossovers, backbone phosphate positions, and single-strand breaks. Obtaining this higher level of detail is a step forward that now allows designers to inspect and refine their designs with base-pair level interventions.

Journal ArticleDOI
01 Dec 2020-Diabetes
TL;DR: Adolescents with T1D exhibited relative renal hypoxia that was associated with albuminuria and with increased RPF, fat mass, and insulin resistance, suggesting a potential role of renal Hypoxia in the development of diabetic kidney disease.
Abstract: The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes.

Journal ArticleDOI
TL;DR: Cryo-EM structures of Cas12i in multiple functional states provide insights that might facilitate the manipulation of this type V CRISPR-Cas endonuclease for genome editing applications.
Abstract: Cas12i is a recently identified type V CRISPR-Cas endonuclease that predominantly cleaves the non-target strand of a double-stranded DNA substrate. This nicking activity of Cas12i could potentially be used for genome editing with high specificity. To elucidate its mechanisms for target recognition and cleavage, we determined cryo-EM structures of Cas12i in multiple functional states. Cas12i pre-orders a seven-nucleotide seed sequence of the crRNA for target recognition and undergoes a two-step activation through crRNA–DNA hybridization. Formation of 14 base pairs activates the nickase activity, and 28-bp hybridization promotes cleavage of the target strand. The atomic structures and mechanistic insights gained should facilitate the manipulation of Cas12i for genome editing applications. Cryo-EM structures of Cas12i in multiple functional states provide insights that might facilitate the manipulation of this type V CRISPR-Cas endonuclease for genome editing applications.

Journal ArticleDOI
TL;DR: A gold nanopyramidal dimer array enhanced the optical force exerted on the DNA, leading to permanent immobilization of the DNA on the plasmonic substrate, foreshadowing the emergence of optical separation and fixation of biomolecules such as proteins and other ncuelic acids.
Abstract: We demonstrate the size-dependent separation and permanent immobilization of DNA on plasmonic substrates by means of plasmonic optical tweezers. We found that a gold nanopyramidal dimer array enhanced the optical force exerted on the DNA, leading to permanent immobilization of the DNA on the plasmonic substrate. The immobilization was realized by a combination of the plasmon-enhanced optical force and the thermophoretic force induced by a photothermal effect of the plasmons. In this study, we applied this phenomenon to the separation and fixation of size-different DNA. During plasmon excitation, DNA strands of different sizes became permanently immobilized on the plasmonic substrate forming micro-rings of DNA. The diameter of the ring was larger for longer DNA (in base pairs). When we used plasmonic optical tweezers to trap DNA of two different lengths dissolved in solution (φx DNA (5.4 kbp) and λ-DNA (48.5 kbp), or φx DNA and T4 DNA (166 kbp)), the DNA were immobilized, creating a double micro-ring pattern. The DNA were optically separated and immobilized in the double ring, with the shorter sized DNA and the larger one forming the smaller and larger rings, respectively. This phenomenon can be quantitatively explained as being due to a combination of the plasmon-enhanced optical force and the thermophoretic force. Our plasmonic optical tweezers open up a new avenue for the separation and immobilization of DNA, foreshadowing the emergence of optical separation and fixation of biomolecules such as proteins and other ncuelic acids.

Journal ArticleDOI
TL;DR: Transient melting of DNA hairpin is revealed to be the underlying cause of leakage and that this can be mitigated through careful consideration of the sequence thermodynamics.
Abstract: Hybridization chain reaction (HCR) was a significant discovery for the development of nanoscale materials and devices. One key challenge for HCR is the vulnerability to background leakage in the absence of the initiator. Here, we systematically analyze the sources of leakage and refine leak-resistant rule by using molecular thermodynamics and dynamics, biochemical and biophysical methods. Transient melting of DNA hairpin is revealed to be the underlying cause of leakage and that this can be mitigated through careful consideration of the sequence thermodynamics. The transition threshold of the energy barrier is proposed as a testing benchmark of leak-resistance DNA hairpins. The universal design of DNA hairpins is illustrated by the analysis of hsa-miR-21-5p as biomarker when used in conjunction with surface-enhanced Raman spectroscopy. We further extend the strategy for specific signal amplification of miRNA homologs. Significantly, it possibly provides a practical route to improve the accuracy of DNA self-assembly for signal amplification, and that could facilitate the development of sensors for the sensitive detection of interest molecules in biotechnology and clinical medicine.