scispace - formally typeset
Search or ask a question

Showing papers on "Ferromagnetism published in 2018"


Journal ArticleDOI
22 Oct 2018-Nature
TL;DR: It is found that the itinerant ferromagnetism persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy, which opens up opportunities for potential voltage-controlled magnetoelectronics based on atomically thin van der Waals crystals.
Abstract: Materials research has driven the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices1,2 because identifying new magnetic materials is key to better device performance and design. Van der Waals crystals retain their chemical stability and structural integrity down to the monolayer and, being atomically thin, are readily tuned by various kinds of gate modulation3,4. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr2Ge2Te6 (ref. 5) and CrI3 (ref. 6) at low temperatures. Here we develop a device fabrication technique and isolate monolayers from the layered metallic magnet Fe3GeTe2 to study magnetotransport. We find that the itinerant ferromagnetism persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, Tc, is suppressed relative to the bulk Tc of 205 kelvin in pristine Fe3GeTe2 thin flakes. An ionic gate, however, raises Tc to room temperature, much higher than the bulk Tc. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 opens up opportunities for potential voltage-controlled magnetoelectronics7-11 based on atomically thin van der Waals crystals.

1,416 citations


Journal ArticleDOI
TL;DR: Reducing the dimensionality of paramagnetic V Se2 results in the emergence of ferromagnetism that is observed in a monolayer and up to room temperature, making VSe2 an attractive material for van der Waals spintronics applications.
Abstract: Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic 1 , optical 2 and many-body quantum3–5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6–8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9 ) and Cr2Ge2Te6 (ref. 10 ), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

1,252 citations


Journal ArticleDOI
TL;DR: Electrical control of magnetism in a bilayer of CrI3 enables the realization of an electrically driven magnetic phase transition and the observation of the magneto-optical Kerr effect in 2D magnets.
Abstract: Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions1–3, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy4–6. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction2,4,7–9. Owing to their unique magnetic properties10–14, the recently reported two-dimensional magnets provide a new system for studying these features15–19. For instance, a bilayer of chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition15,16. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

1,000 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Fe3GeTe2 (FGT), an exfoliable vdW magnet, exhibits robust 2D ferromagnetism with strong perpendicular anisotropy when thinned down to a monolayer.
Abstract: Discoveries of intrinsic two-dimensional (2D) ferromagnetism in van der Waals (vdW) crystals provide an interesting arena for studying fundamental 2D magnetism and devices that employ localized spins1–4. However, an exfoliable vdW material that exhibits intrinsic 2D itinerant magnetism remains elusive. Here we demonstrate that Fe3GeTe2 (FGT), an exfoliable vdW magnet, exhibits robust 2D ferromagnetism with strong perpendicular anisotropy when thinned down to a monolayer. Layer-number-dependent studies reveal a crossover from 3D to 2D Ising ferromagnetism for thicknesses less than 4 nm (five layers), accompanied by a fast drop of the Curie temperature (TC) from 207 K to 130 K in the monolayer. For FGT flakes thicker than ~15 nm, a distinct magnetic behaviour emerges in an intermediate temperature range, which we show is due to the formation of labyrinthine domain patterns. Our work introduces an atomically thin ferromagnetic metal that could be useful for the study of controllable 2D itinerant ferromagnetism and for engineering spintronic vdW heterostructures5. Metallic ferromagnetism is reported in an exfoliated monolayer of the van der Waals material Fe3GeTe2.

924 citations


Journal ArticleDOI
TL;DR: In this article, the magnetic properties of both monolayer and bilayer CrI3-graphene vertical heterostructures were demonstrated by electrostatic doping using CVD.
Abstract: The atomic thickness of two-dimensional materials provides a unique opportunity to control their electrical1 and optical2 properties as well as to drive the electronic phase transitions3 by electrostatic doping. The discovery of two-dimensional magnetic materials4–10 has opened up the prospect of the electrical control of magnetism and the realization of new functional devices11. A recent experiment based on the linear magneto-electric effect has demonstrated control of the magnetic order in bilayer CrI3 by electric fields12. However, this approach is limited to non-centrosymmetric materials11,13–16 magnetically biased near the antiferromagnet–ferromagnet transition. Here, we demonstrate control of the magnetic properties of both monolayer and bilayer CrI3 by electrostatic doping using CrI3–graphene vertical heterostructures. In monolayer CrI3, doping significantly modifies the saturation magnetization, coercive force and Curie temperature, showing strengthened/weakened magnetic order with hole/electron doping. Remarkably, in bilayer CrI3, the electron doping above ~2.5 × 1013 cm−2 induces a transition from an antiferromagnetic to a ferromagnetic ground state in the absence of a magnetic field. The result reveals a strongly doping-dependent interlayer exchange coupling, which enables robust switching of magnetization in bilayer CrI3 by small gate voltages. Electrostatic doping in vertical van der Waals CrI3–graphene heterostructures provides means to control the magnetic properties of monolayer and bilayer CrI3.

838 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that the itinerant ferromagnetic order persists in Fe$_3$GeTe$_2$ down to monolayer with an out-of-plane magnetocrystalline anisotropy.
Abstract: Material research has been a major driving force in the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices; identifying new magnetic materials is key to better device performance and new device paradigm. The advent of two-dimensional van der Waals crystals creates new possibilities. This family of materials retain their chemical stability and structural integrity down to monolayers and, being atomically thin, are readily tuned by various kinds of gate modulation. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr$_2$Ge$_2$Te$_6$ and CrI$_3$ at low temperatures. Here, we developed a new device fabrication technique, and successfully isolated monolayers from layered metallic magnet Fe$_3$GeTe$_2$ for magnetotransport study. We found that the itinerant ferromagnetism persists in Fe$_3$GeTe$_2$ down to monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, $T_c$, is suppressed in pristine Fe$_3$GeTe$_2$ thin flakes. An ionic gate, however, dramatically raises the $T_c$ up to room temperature, significantly higher than the bulk $T_c$ of 205 Kelvin. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe$_3$GeTe$_2$ opens up opportunities for potential voltage-controlled magnetoelectronics based on atomically thin van der Waals crystals.

770 citations


Journal ArticleDOI
TL;DR: The application of electric fields enables reversible switching of the magnetic order of CrI3 bilayers between antiferromagnetic and ferromagnetic states and achieves a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the inter layer spin-flip transition.
Abstract: Controlling magnetism by purely electrical means is a key challenge to better information technology 1 . A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors 5 , multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform 13 . Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state 12 , by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

704 citations


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate voltage-controlled switching between antiferromagnetic and ferromagnetic states in bilayer chromium triiodide (CrI3) bilayers.
Abstract: The challenge of controlling magnetism using electric fields raises fundamental questions and addresses technological needs such as low-dissipation magnetic memory. The recently reported two-dimensional (2D) magnets provide a new system for studying this problem owing to their unique magnetic properties. For instance, bilayer chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states which exhibit spin-layer locking, leading to a remarkable linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results pave the way for exploring new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

576 citations


Journal ArticleDOI
TL;DR: The observation of room temperature ferromagnetism in manganese selenide (MnSe x) films grown by molecular beam epitaxy (MBE) holds promise for potential applications in energy efficient information storage and processing.
Abstract: Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSex) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that, in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe2) monolayer, while for thicker films it could originate from a combination of vdW MnSe2 and/or interfacial magnetism of α-MnSe(111). Magnetization measurements of monolayer MnSex films on GaSe and SnSe2 epilayers show ferromagnetic ordering with a large saturation magnetization of ∼4 Bohr magnetons per Mn, which is consistent with the density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe2. Growing MnSex films on GaSe up to a high thickness (∼4...

565 citations


Journal ArticleDOI
TL;DR: In monolayer CrI3, doping significantly modifies the saturation magnetization, coercive force and Curie temperature, showing strengthened/weakened magnetic order with hole/electron doping, and the result reveals a strongly doping-dependent interlayer exchange coupling, which enables robust switching of magnetization in bilayerCrI3 by small gate voltages.
Abstract: The atomic thickness of two-dimensional (2D) materials provides a unique opportunity to control material properties and engineer new functionalities by electrostatic doping. Electrostatic doping has been demonstrated to tune the electrical and optical properties of 2D materials in a wide range, as well as to drive the electronic phase transitions. The recent discovery of atomically thin magnetic insulators has opened up the prospect of electrical control of magnetism and new devices with unprecedented performance. Here we demonstrate control of the magnetic properties of monolayer and bilayer CrI3 by electrostatic doping using a dual-gate field-effect device structure. In monolayer CrI3, doping significantly modifies the saturation magnetization, coercive force and Curie temperature, showing strengthened (weakened) magnetic order with hole (electron) doping. Remarkably, in bilayer CrI3 doping drastically changes the interlayer magnetic order, causing a transition from an antiferromagnetic ground state in the pristine form to a ferromagnetic ground state above a critical electron density. The result reveals a strongly doping-dependent interlayer exchange coupling, which enables robust switching of magnetization in bilayer CrI3 by small gate voltages.

564 citations


Journal ArticleDOI
TL;DR: Large tunneling magnetoresistance is reported through exfoliated CrI3 crystals and its evolution is attributed to the multiple transitions to different magnetic states, demonstrating the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.
Abstract: Magnetic layered van der Waals crystals are an emerging class of materials giving access to new physical phenomena, as illustrated by the recent observation of 2D ferromagnetism in Cr2Ge2Te6 and CrI3. Of particular interest in semiconductors is the interplay between magnetism and transport, which has remained unexplored. Here we report magneto-transport measurements on exfoliated CrI3 crystals. We find that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10,000%. The evolution of the magnetoresistance with magnetic field and temperature reveals that the phenomenon originates from multiple transitions to different magnetic states, whose possible microscopic nature is discussed on the basis of all existing experimental observations. This observed dependence of the conductance of a tunnel barrier on its magnetic state is a phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.

Journal ArticleDOI
15 Jun 2018-Science
TL;DR: Tuning through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field is reported, electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition.
Abstract: Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.

Journal ArticleDOI
TL;DR: Large intrinsic AHE with linear dependence on magnetization in a half-metallic ferromagnet Co3Sn2S2 single crystal with Kagome lattice of Co atoms, arising dominantly from the Weyl fermions is reported.
Abstract: The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspects in condensed matter physics and has been a controversial topic for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions to Berry curvature around Weyl nodes, possibly leading to a large intrinsic AHE. Here, we report the quite large AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 both theoretically and experimentally, we demonstrate that the intrinsic AHE from the Weyl fermions near the Fermi energy is dominating. The intrinsic anomalous Hall conductivity depends linearly on the magnetization and can be reproduced by theoretical simulation, in which the Weyl nodes monotonically move with the constrained magnetic moment on Co atom.

Journal ArticleDOI
TL;DR: In this paper, a 2D itinerant ferromagnetic metal with strong out-of-plane anisotropy was synthesized for the first time, and it was shown to exhibit labyrinthine domain patterns.
Abstract: Recent discoveries of intrinsic two-dimensional (2D) ferromagnetism in insulating/semiconducting van der Waals (vdW) crystals open up new possibilities for studying fundamental 2D magnetism and devices employing localized spins. However, a vdW material that exhibits 2D itinerant magnetism remains elusive. In fact, the synthesis of such single-crystal ferromagnetic metals with strong perpendicular anisotropy at the atomically thin limit has been a long-standing challenge. Here, we demonstrate that monolayer Fe3GeTe2 is a robust 2D itinerant ferromagnet with strong out-of-plane anisotropy. Layer-dependent studies reveal a crossover from 3D to 2D Ising ferromagnetism for thicknesses less than 4 nm (five layers), accompanying a fast drop of the Curie temperature from 207 K down to 130 K in the monolayer. For Fe3GeTe2 flakes thicker than ~15 nm, a peculiar magnetic behavior emerges within an intermediate temperature range, which we show is due to the formation of labyrinthine domain patterns. Our work introduces a novel atomically thin ferromagnetic metal that could be useful for the study of controllable 2D itinerant Ising ferromagnetism and for engineering spintronic vdW heterostructures.

Journal ArticleDOI
TL;DR: It is shown that, via electrostatic gating, a strong field effect can be observed in devices based on few-layered ferromagnetic semiconducting Cr2Ge2Te6, which shows bipolar tunable magnetization loops below the Curie temperature.
Abstract: Manipulating a quantum state via electrostatic gating has been of great importance for many model systems in nanoelectronics. Until now, however, controlling the electron spins or, more specifically, the magnetism of a system by electric-field tuning has proven challenging1–4. Recently, atomically thin magnetic semiconductors have attracted significant attention due to their emerging new physical phenomena5–13. However, many issues are yet to be resolved to convincingly demonstrate gate-controllable magnetism in these two-dimensional materials. Here, we show that, via electrostatic gating, a strong field effect can be observed in devices based on few-layered ferromagnetic semiconducting Cr2Ge2Te6. At different gate doping, micro-area Kerr measurements in the studied devices demonstrate bipolar tunable magnetization loops below the Curie temperature, which is tentatively attributed to the moment rebalance in the spin-polarized band structure. Our findings of electric-field-controlled magnetism in van der Waals magnets show possibilities for potential applications in new-generation magnetic memory storage, sensors and spintronics. Few-layer semiconducting Cr2Ge2Te6 shows bipolar gate-tuned magnetism below its ferromagnetic Curie temperature.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the connection between the stacking order and magnetic properties of bilayer CrI3 using first-principles calculations and showed that stacking order defines the magnetic ground state.
Abstract: We report the connection between the stacking order and magnetic properties of bilayer CrI3 using first-principles calculations. We show that the stacking order defines the magnetic ground state. By changing the interlayer stacking order, one can tune the interlayer exchange interaction between antiferromagnetic and ferromagnetic. To measure the predicted stacking-dependent magnetism, we propose using linear magnetoelectric effect. Our results not only gives a possible explanation for the observed antiferromagnetism in bilayer CrI3 but also have direct implications in heterostructures made of two-dimensional magnets.

Journal ArticleDOI
12 Sep 2018-Nature
TL;DR: Tunable spin transport over long distances is demonstrated through the antiferromagnetic insulator haematite, paving the way to electrically tunable, ultrafast, low-power, antiferromeagnetic-insulator-based spin-logic devices6,13 that operate without magnetic fields at room temperature.
Abstract: Spintronics relies on the transport of spins, the intrinsic angular momentum of electrons, as an alternative to the transport of electron charge as in conventional electronics. The long-term goal of spintronics research is to develop spin-based, low-dissipation computing-technology devices. Recently, long-distance transport of a spin current was demonstrated across ferromagnetic insulators1. However, antiferromagnetically ordered materials, the most common class of magnetic materials, have several crucial advantages over ferromagnetic systems for spintronics applications2: antiferromagnets have no net magnetic moment, making them stable and impervious to external fields, and can be operated at terahertz-scale frequencies3. Although the properties of antiferromagnets are desirable for spin transport4–7, indirect observations of such transport indicate that spin transmission through antiferromagnets is limited to only a few nanometres8–10. Here we demonstrate long-distance propagation of spin currents through a single crystal of the antiferromagnetic insulator haematite (α-Fe2O3)11, the most common antiferromagnetic iron oxide, by exploiting the spin Hall effect for spin injection. We control the flow of spin current across a haematite–platinum interface—at which spins accumulate, generating the spin current—by tuning the antiferromagnetic resonance frequency using an external magnetic field12. We find that this simple antiferromagnetic insulator conveys spin information parallel to the antiferromagnetic Neel order over distances of more than tens of micrometres. This mechanism transports spins as efficiently as the most promising complex ferromagnets1. Our results pave the way to electrically tunable, ultrafast, low-power, antiferromagnetic-insulator-based spin-logic devices6,13 that operate without magnetic fields at room temperature.

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets, and possible future research directions.
Abstract: Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field. An overview of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets, and possible future research directions.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state, by the application of small gate voltages in field effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy.
Abstract: Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2,3,4, FM semiconductors5, multiferroics6,7,8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

Journal ArticleDOI
TL;DR: This work demonstrates field-free switching in ferromagnetic trilayers and describes a mechanism for spin-current generation at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence.
Abstract: Magnetic torques generated through spin–orbit coupling1–8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field9–14. One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin–orbit torque is relevant to energy-efficient control of spintronic devices. Spin–orbit torques are reported in ferromagnetic trilayers that lead to the switching of perpendicular magnetizations without an external magnetic field.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the observation of a giant anomalous Nernst effect at room temperature in the full-Heusler ferromagnet Co2MnGa, an order of magnitude larger than the previous maximum value reported for a magnetic conductor.
Abstract: In conducting ferromagnets, an anomalous Nernst effect—the generation of an electric voltage perpendicular to both the magnetization and an applied temperature gradient—can be driven by the nontrivial geometric structure, or Berry curvature, of the wavefunction of the electrons1,2 Here, we report the observation of a giant anomalous Nernst effect at room temperature in the full-Heusler ferromagnet Co2MnGa, an order of magnitude larger than the previous maximum value reported for a magnetic conductor3,4 Our numerical and analytical calculations indicate that the proximity to a quantum Lifshitz transition between type-I and type-II magnetic Weyl fermions5–7 is responsible for the observed –Tlog(T) behaviour, with T denoting the temperature, and the enhanced value of the transverse thermoelectric conductivity The temperature dependence of the thermoelectric response in experiments and numerical calculations can be understood in terms of a quantum critical-scaling function predicted by the low-energy effective theory over more than a decade of temperatures Moreover, the observation of an unsaturated positive longitudinal magnetoconductance, or chiral anomaly8–10, also provides evidence for the existence of Weyl fermions11,12 in Co2MnGa A magnetic field and temperature gradient produce a large electric potential in a ferromagnet, indicating the possible presence of Weyl points The specific structure of Weyl points gives the electrons quantum-critical properties

Journal ArticleDOI
TL;DR: In this article, the authors show that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10, 000 %, which is a new phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.
Abstract: Magnetic layered van der Waals crystals are an emerging class of materials giving access to new physical phenomena, as illustrated by the recent observation of 2D ferromagnetism in Cr2Ge2Te6 and CrI3. Of particular interest in semiconductors is the interplay between magnetism and transport, which has remained unexplored. Here we report first magneto-transport measurements on exfoliated CrI3 crystals. We find that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10 000 %. The evolution of the magnetoresistance with magnetic field and temperature reveals that the phenomenon originates from multiple transitions to different magnetic states, whose possible microscopic nature is discussed on the basis of all existing experimental observations. This observed dependence of the conductance of a tunnel barrier on its magnetic state is a new phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.

Journal ArticleDOI
TL;DR: This study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.
Abstract: Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic b...

Journal ArticleDOI
TL;DR: In this paper, two bands of excitation for spin waves in the insulating honeycomb ferromagnet CrI${}_{3} showed promise for potential spintronic applications.
Abstract: New experiments reveal two bands of excitation for spin waves in the insulating honeycomb ferromagnet CrI${}_{3}$, showing promise for potential spintronic applications.

Journal ArticleDOI
TL;DR: It is shown that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrMions and bobbers.
Abstract: Chiral magnetic skyrmions1,2 are nanoscale vortex-like spin textures that form in the presence of an applied magnetic field in ferromagnets that support the Dzyaloshinskii–Moriya interaction (DMI) because of strong spin–orbit coupling and broken inversion symmetry of the crystal3,4. In sharp contrast to other systems5,6 that allow for the formation of a variety of two-dimensional (2D) skyrmions, in chiral magnets the presence of the DMI commonly prevents the stability and coexistence of topological excitations of different types 7 . Recently, a new type of localized particle-like object—the chiral bobber (ChB)—was predicted theoretically in such materials 8 . However, its existence has not yet been verified experimentally. Here, we report the direct observation of ChBs in thin films of B20-type FeGe by means of quantitative off-axis electron holography (EH). We identify the part of the temperature–magnetic field phase diagram in which ChBs exist and distinguish two mechanisms for their nucleation. Furthermore, we show that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrmions and bobbers. Electron holography enables direct experimental verification of the existence of chiral bobbers in thin films of chiral magnets.

Journal ArticleDOI
TL;DR: It is revealed that the superexchange-driven ferromagnetism is closely related to the virtual exchange gap, and lowering this gap by isovalent alloying can significantly enhance the ferromagnetic (FM) coupling.
Abstract: Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the cornerstone for next-generation electric devices, but the development is highly limited by the weak ferromagnetic coupl...

Journal ArticleDOI
05 Nov 2018
TL;DR: In this paper, first-principles calculations are performed and analyzed to develop a simple Hamiltonian, to investigate magnetic anisotropy of CrI3 and CrGeTe3 monolayers.
Abstract: Magnetic anisotropy is crucially important for the stabilization of two-dimensional (2D) magnetism, which is rare in nature but highly desirable in spintronics and for advancing fundamental knowledge. Recent works on CrI3 and CrGeTe3 monolayers not only led to observations of the long-time-sought 2D ferromagnetism, but also revealed distinct magnetic anisotropy in the two systems, namely Ising behavior for CrI3 versus Heisenberg behavior for CrGeTe3. Such magnetic difference strongly contrasts with structural and electronic similarities of these two materials, and understanding it at a microscopic scale should be of large benefits. Here, first-principles calculations are performed and analyzed to develop a simple Hamiltonian, to investigate magnetic anisotropy of CrI3 and CrGeTe3 monolayers. The anisotropic exchange coupling in both systems is surprisingly determined to be of Kitaev-type. Moreover, the interplay between this Kitaev interaction and single ion anisotropy (SIA) is found to naturally explain the different magnetic behaviors of CrI3 and CrGeTe3. Finally, both the Kitaev interaction and SIA are further found to be induced by spin–orbit coupling of the heavy ligands (I of CrI3 or Te of CrGeTe3) rather than the commonly believed 3d magnetic Cr ions. Interplay between two anisotropic interactions—Kitaev and single-ion—is responsible for magnetism in ferromagnetic thin films. Teams led by Hongjun Xiang at Fudan University in China and Laurent Bellaiche at the University of Arkansas in the US led to the use of first-principles calculations to elucidate magnetic anisotropy in two different two-dimensional ferromagnetic materials with different magnetic behaviors. By developing a predictive Hamiltonian and a tight-binding model, the origin of two-dimensional magnetism in chromium–iodine and chromium–germanium–tellurium monolayers was revealed to be Kitaev interactions and their interplay with single-ion anisotropy. Both the Kitaev and single-ion anisotropies were induced by the spin–orbit coupling of the heavy ligand elements iodine and tellurium. Research into Kitaev interactions in unconventional systems may contribute towards better understanding of interesting physics.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the properties of Heusler compounds from a topological perspective and the connection between the topology and the symmetry properties, spin gapless semiconductors, magnetic compensated ferrimagnets, non-collinear order in ferromagnetic and ǫ-antiferromagnetic HeUsler compounds, anomalous Hall effect and magnetic antiskyrmions.
Abstract: Heusler compounds, initially discovered by Fritz Heusler more than a century ago, have grown into a family of more than 1,000 compounds, synthesized from combinations of more than 40 elements. Recently, by incorporating heavy elements that can give rise to strong spin–orbit coupling, non-trivial topological phases of matter, such as topological insulators, have been discovered in Heusler materials. Moreover, interplay between the symmetry, spin–orbit coupling and magnetic structure allows for the realization of a wide variety of topological phases through Berry curvature design. The topological properties of Heusler compounds can be manipulated by various external perturbations, resulting in exotic properties, such as the chiral anomaly and large anomalous, spin and topological Hall effects. In addition, the non-zero Berry curvature that arises as a result of non-collinear order gives rise to a non-zero anomalous Hall effect. Besides this k-space Berry curvature, Heusler compounds with non-collinear magnetic structures also possess real-space topological states in the form of magnetic antiskyrmions, which have not yet been observed in other materials. In this Review, we discuss Heusler compounds from a topological perspective and the connection between the topology and the symmetry properties, spin gapless semiconductors, magnetic compensated ferrimagnets, non-collinear order in ferromagnetic and antiferromagnetic Heusler compounds, the anomalous Hall effect and, finally, magnetic antiskyrmions. Together with the new topological viewpoint and the high tunability, novel physical properties and phenomena await discovery in Heusler compounds.

Journal ArticleDOI
13 Jun 2018
TL;DR: In this article, the authors studied tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes, which could allow two-dimensional spintronic devices to be developed.
Abstract: Van der Waals heterostructures, which are composed of layered two-dimensional materials, offer a platform to investigate a diverse range of physical phenomena and could be of use in a variety of applications. Heterostructures containing two-dimensional ferromagnets, such as chromium triiodide (CrI3), have recently been reported, which could allow two-dimensional spintronic devices to be developed. Here we study tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes. In devices with non-magnetic barriers, conservation of momentum can be relaxed by phonon-assisted tunnelling or by tunnelling through localized states. In contrast, in the devices with ferromagnetic barriers, the major tunnelling mechanisms are the emission of magnons at low temperatures and the scattering of electrons on localized magnetic excitations at temperatures above the Curie temperature. Magnetoresistance in the graphene electrodes further suggests induced spin–orbit coupling and proximity exchange via the ferromagnetic barrier. Tunnelling with magnon emission offers the possibility of spin injection.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the long-distance propagation of spin currents through hematite (α-Fe2O3), the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection.
Abstract: Spintronics uses spins, the intrinsic angular momentum of electrons, as an alternative for the electron charge. Its long-term goal is in the development of beyond-Moore low dissipation technology devices. Recent progress demonstrated the long-distance transport of spin signals across ferromagnetic insulators. Antiferromagnetically ordered materials are however the most common class of magnetic materials with several crucial advantages over ferromagnetic systems. In contrast to the latter, antiferromagnets exhibit no net magnetic moment, which renders them stable and impervious to external fields. In addition, they can be operated at THz frequencies. While fundamentally their properties bode well for spin transport, previous indirect observations indicate that spin transmission through antiferromagnets is limited to short distances of a few nanometers. Here we demonstrate the long-distance, over tens of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3), the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection. We control the spin current flow by the interfacial spin-bias and by tuning the antiferromagnetic resonance frequency with an external magnetic field. This simple antiferromagnetic insulator is shown to convey spin information parallel to the compensated moment (N\'eel order) over distances exceeding tens of micrometers. This newly-discovered mechanism transports spin as efficiently as the net magnetic moments in the best-suited complex ferromagnets. Our results pave the way to ultra-fast, low-power antiferromagnet-insulator-based spin-logic devices that operate at room temperature and in the absence of magnetic fields.