scispace - formally typeset
Search or ask a question

Showing papers on "Palladium published in 2019"


Journal ArticleDOI
TL;DR: This Review provides a comprehensive overview of Palladium/norbornene cooperative catalysis, including the early stoichiometric investigations, catalytic reaction developments, as well as the applications in the syntheses of bioactive compounds and polymers.
Abstract: Palladium/norbornene cooperative catalysis has emerged as a distinct approach to construct polyfunctionalized arenes from readily available starting materials. This Review provides a comprehensive overview of this field, including the early stoichiometric investigations, catalytic reaction developments, as well as the applications in the syntheses of bioactive compounds and polymers. The section of catalytic reactions is divided into two parts according to the reaction initiation mode: Pd(0)-initiated reactions and Pd(II)-initiated reactions.

288 citations


Journal ArticleDOI
TL;DR: This work demonstrates a simple approach to generate atomically dispersed platinum via a thermal emitting method using bulk Pt metal as a precursor, significantly simplifying synthesis routes and minimizing synthesis costs.
Abstract: Developing a facile route to access active and well-defined single atom sites catalysts has been a major area of focus for single atoms catalysts (SACs). Herein, we demonstrate a simple approach to generate atomically dispersed platinum via a thermal emitting method using bulk Pt metal as a precursor, significantly simplifying synthesis routes and minimizing synthesis costs. The ammonia produced by pyrolysis of Dicyandiamide can coordinate with platinum atoms by strong coordination effect. Then, the volatile Pt(NH3)x can be anchored onto the surface of defective graphene. The as-prepared Pt SAs/DG exhibits high activity for the electrochemical hydrogen evolution reaction and selective oxidation of various organosilanes. This viable thermal emitting strategy can also be applied to other single metal atoms, for example, gold and palladium. Our findings provide an enabling and versatile platform for facile accessing SACs toward many industrial important reactions.

244 citations


Journal ArticleDOI
TL;DR: This Minireview summarizes some of the recent progress in the extensively studied Brookhart and Drent catalyst systems, as well as emerging alternative palladium and nickel catalysts.
Abstract: Transition-metal-catalyzed copolymerization of olefins with polar monomers represents a challenge because of the large variety of substrate-induced side reactions. However, this approach also holds the potential for the direct synthesis of polar functionalized polyolefins with unique properties. After decades of research, only a few catalyst systems have been found to be suitable for this reaction. Some major advances in catalyst development have been made in the past five years. This Minireview summarizes some of the recent progress in the extensively studied Brookhart and Drent catalyst systems, as well as emerging alternative palladium and nickel catalysts.

242 citations


Journal ArticleDOI
TL;DR: The authors show that the precise palladium atoms architecture reached by controlled co-precipitation overcomes selectivity and stability limitations associated with palladium nanoparticles for CO2-based methanol synthesis.
Abstract: Metal promotion is broadly applied to enhance the performance of heterogeneous catalysts to fulfill industrial requirements. Still, generating and quantifying the effect of the promoter speciation that exclusively introduces desired properties and ensures proximity to or accommodation within the active site and durability upon reaction is very challenging. Recently, In2O3 was discovered as a highly selective and stable catalyst for green methanol production from CO2. Activity boosting by promotion with palladium, an efficient H2-splitter, was partially successful since palladium nanoparticles mediate the parasitic reverse water–gas shift reaction, reducing selectivity, and sinter or alloy with indium, limiting metal utilization and robustness. Here, we show that the precise palladium atoms architecture reached by controlled co-precipitation eliminates these limitations. Palladium atoms replacing indium atoms in the active In3O5 ensemble attract additional palladium atoms deposited onto the surface forming low-nuclearity clusters, which foster H2 activation and remain unaltered, enabling record productivities for 500 h. Generating and quantifying the effect of the promoter speciation in heterogeneous catalysts is very challenging. Here, the authors show that the precise palladium atoms architecture reached by controlled co-precipitation overcomes selectivity and stability limitations associated with palladium nanoparticles for CO2-based methanol synthesis.

227 citations


Journal ArticleDOI
TL;DR: A facile impregnation-adsorption method to attach single noble-metal atoms to N-doped porous carbon and demonstrate strong electrocatalytic hydrogen evolution performances for Pt catalysts is shown.
Abstract: Single-site catalysts feature high catalytic activity but their facile construction and durable utilization are highly challenging. Herein, we report a simple impregnation-adsorption method to construct platinum single-site catalysts by synergic micropore trapping and nitrogen anchoring on hierarchical nitrogen-doped carbon nanocages. The optimal catalyst exhibits a record-high electrocatalytic hydrogen evolution performance with low overpotential, high mass activity and long stability, much superior to the platinum-based catalysts to date. Theoretical simulations and experiments reveal that the micropores with edge-nitrogen-dopants favor the formation of isolated platinum atoms by the micropore trapping and nitrogen anchoring of [PtCl6]2-, followed by the spontaneous dechlorination. The platinum-nitrogen bonds are more stable than the platinum-carbon ones in the presence of adsorbed hydrogen atoms, leading to the superior hydrogen evolution stability of platinum single-atoms on nitrogen-doped carbon. This method has been successfully applied to construct the single-site catalysts of other precious metals such as palladium, gold and iridium.

207 citations


Journal ArticleDOI
01 Jan 2019
TL;DR: In this paper, the authors used AP-XPS and in situ and ex situ transmission electron microscopy (TEM) to elucidate the origin of composition dependence observed in the catalytic activities of monodisperse CoPd bimetallic nanocatalysts for CO oxidation.
Abstract: Bimetallic and multi-component catalysts typically exhibit composition-dependent activity and selectivity, and when optimized often outperform single-component catalysts. Here we used ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ and ex situ transmission electron microscopy (TEM) to elucidate the origin of composition dependence observed in the catalytic activities of monodisperse CoPd bimetallic nanocatalysts for CO oxidation. We found that the catalysis process induced a reconstruction of the catalysts, leaving CoOx on the nanoparticle surface. The synergy between Pd and CoOx coexisting on the surface promotes the catalytic activity of the bimetallic catalysts. This synergistic effect can be optimized by tuning the Co/Pd ratios in the nanoparticle synthesis, and it reaches a maximum at compositions near Co0.24Pd0.76, which achieves complete CO conversion at the lowest temperature. Our combined AP-XPS and TEM studies provide direct observation of the surface evolution of the bimetallic nanoparticles under catalytic conditions and show how this evolution correlates with catalytic properties.

164 citations


Journal ArticleDOI
25 Jan 2019-iScience
TL;DR: The ultrathin nanosheet of graphdiyne (GDY)-supported zero-valent palladium atoms and its direct application as a three-dimensional flexible hydrogen-evolving cathode and its reliable performance as an HER catalyst are reported.

132 citations


Journal ArticleDOI
TL;DR: By simple recrystallization, the catalytic activity of deactivated species can be recovered from the isolation yield 46% to 92% for 4-bromobenzonitrile conversion at the same conditions, revealing the great application potentials of HOF-based catalysts.
Abstract: Hydrogen-bonded organic framework (HOF)-based catalysts still remain unreported thus far due to their relatively weak stability. In the present work, a robust porous HOF (HOF-19) with a Brunauer-Emmett-Teller surface area of 685 m2 g-1 was reticulated from a cagelike building block, amino-substituted bis(tetraoxacalix[2]arene[2]triazine), depending on the hydrogen bonding with the help of π-π interactions. The postsynthetic metalation of HOF-19 with palladium acetate afforded a palladium(II)-containing heterogeneous catalyst with porous hydrogen-bonded structure retained, which exhibits excellent catalytic performance for the Suzuki-Miyaura coupling reaction with the high isolation yields (96-98%), prominent stability, and good selectivity. More importantly, by simple recrystallization, the catalytic activity of deactivated species can be recovered from the isolation yield 46% to 92% for 4-bromobenzonitrile conversion at the same conditions, revealing the great application potentials of HOF-based catalysts.

131 citations


Journal ArticleDOI
TL;DR: In this article, the activity, selectivity and mechanisms of commercially available noble and transition metal heterogeneous catalysts, on neutral (carbon) support were investigated for hydrodeoxygenation (HDO) of eugenol.

126 citations


Journal ArticleDOI
TL;DR: In this paper, the role of palladium nanoparticles (Pd NPs) in the catalytic process is discussed and a review describes the recent advances in understanding of the mechanism of Pd catalyzed C-C cross-coupling reactions.

119 citations


Journal ArticleDOI
01 Jan 2019
TL;DR: Ozin et al. as mentioned in this paper showed that decorating silicon nanosheets with palladium nanoparticles can render the process catalytic, which can enable the reverse water-gas shift reaction in a catalytic cycle.
Abstract: Heterogeneous conversion of CO2 to fuels by Si surface hydrides has recently attracted broad research interest. Being earth-abundant, low-cost and non-toxic, elemental Si is a very attractive candidate for this process, which targets CO2 conversion to synthetic fuels on a gigatonne-per-year scale. It is well known, however, that silicon hydrides react stoichiometrically with CO2, and all attempts have failed to achieve catalytic conversion. The problem originates from the formation of inactive silanols and siloxanes with permanent loss of Si hydrides. Here, we deposit Pd on the surface of Si nanosheets, aiming to address the core of the problem. An operando infrared study shows Si hydrides successfully regenerating on such surfaces exposed to CO2 and H2. We demonstrate that silicon–hydride nanosheets decorated with Pd nanoparticles can enable the reverse water–gas shift reaction in a catalytic cycle. Silicon–hydride materials are attractive candidates for the photoreduction of carbon dioxide into fuels, although they have only worked stoichiometrically so far. Now, Ozin and co-workers show how decorating silicon nanosheets with palladium nanoparticles renders the process catalytic.

Journal ArticleDOI
TL;DR: A general overview of palladium pincer complexes, their structural diversity and synthetic protocols is provided in this article, with a focus on their use in cross-coupling and related reactions.

Journal ArticleDOI
20 Dec 2019-Science
TL;DR: The design of a pyridyl-substituted bidentate phosphine ligand (HeMaRaphos) that, upon coordination to palladium, catalyzes adipate diester formation from 1,3-butadiene, carbon monoxide, and butanol with 97% selectivity and 100% atom-economy under industrially viable and scalable conditions is reported.
Abstract: The direct carbonylation of 1,3-butadiene offers the potential for a more cost-efficient and environmentally benign route to industrially important adipic acid derivatives. However, owing to the complex reaction network of regioisomeric carbonylation and isomerization pathways, a selective practical catalyst for this process has thus far proven elusive. Here, we report the design of a pyridyl-substituted bidentate phosphine ligand (HeMaRaphos) that, upon coordination to palladium, catalyzes adipate diester formation from 1,3-butadiene, carbon monoxide, and butanol with 97% selectivity and 100% atom-economy under industrially viable and scalable conditions (turnover number > 60,000). This catalyst system also affords access to a variety of other di- and triesters from 1,2- and 1,3-dienes.

Journal ArticleDOI
TL;DR: Improving the reaction kinetics of hydrogen evolution and oxidation reactions (HER/HOR) in alkaline media is critical to promote the development of alkaline fuel cells and electrolyzers.
Abstract: Improving the reaction kinetics of hydrogen evolution and oxidation reactions (HER/HOR) in alkaline media is critical to promote the development of alkaline fuel cells and electrolyzers. Here, we p...

Journal ArticleDOI
TL;DR: This carbopalladation enables the coupling of organoboronic esters and aryl triflates across a C–C σ-bond of a bicyclo[1.1.0]butane to form disastereomerically pure trisubstituted cyclobutanes.
Abstract: Transition-metal-catalysed cross-coupling reactions, particularly those mediated by palladium, are some of the most broadly used chemical transformations. The fundamental reaction steps of such cross-couplings typically include oxidative addition, transmetallation, carbopalladation of a π-bond and/or reductive elimination. Herein, we describe an unprecedented fundamental reaction step: a C-C σ-bond carbopalladation. Specifically, an aryl palladium(II) complex interacts with a σ-bond of a strained bicyclo[1.1.0]butyl boronate complex to enable addition of the aryl palladium(II) species and an organoboronic ester substituent across a C-C σ-bond. The overall process couples readily available aryl triflates and organoboronic esters across a cyclobutane unit with total diastereocontrol. The pharmaceutically relevant 1,1,3-trisubstituted cyclobutane products are decorated with an array of modular building blocks, including a boronic ester that can be readily derivatized.

Journal ArticleDOI
TL;DR: A platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with a low platinum loading for electrocatalysis of oxygen reduction with high stability and outstanding durability is reported.
Abstract: Advanced electrocatalysts with low platinum content, high activity and durability for the oxygen reduction reaction can benefit the widespread commercial use of fuel cell technology. Here, we report a platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with a low platinum loading of only 2.4 wt% for the use in alkaline fuel cell cathodes. This ternary catalyst shows a mass activity that is enhanced by a factor of 30.6 relative to a commercial platinum catalyst, which is attributed to the unique charge localization induced by platinum-trimer decoration. The high stability of the decorated trimers endows the catalyst with an outstanding durability, maintaining decent electrocatalytic activity with no degradation for more than 322,000 potential cycles in alkaline electrolyte. These findings are expected to be useful for surface engineering and design of advanced fuel cell catalysts with atomic-scale platinum decoration. Fuel cells are promising for converting fuel into electricity, but rely on development of high-performance catalysts for oxygen reduction. Here the authors report a highly durable platinum-trimer decorated cobalt-palladium catalyst with low platinum loading for electrocatalysis of oxygen reduction.

Journal ArticleDOI
TL;DR: In this article, a SAC consisting of single Pd atoms anchored on well-designed graphdiyne/graphene heterostructure (Pd1/GDY/G) is synthesized.
Abstract: With the maximum atom-utilization efficiency, single atom catalysts (SACs) have attracted great research interest in catalysis science recently. To address the following key challenges for the further development of SACs: i) how to stabilize and avoid the aggregation of SACs, ii) how to enhance the specific surface area and conductivity of supports, and iii) how to achieve scalable mass production with low cost, a SAC consisting of single Pd atoms anchored on well-designed graphdiyne/graphene (GDY/G) heterostructure (Pd1/GDY/G) is synthesized. Pd1/GDY/G exhibits high catalytic performance, as demonstrated by the reduction reaction of 4-nitrophenol. Furthermore, density functional theory calculation indicates that graphene in the GDY/G heterostructure plays a key role in the enhancement of catalytic efficiency owing to the electron transfer process, deriving from the gap between the Fermi level of graphene and the conduction band minimum of GDY. The GDY/G heterostructure is a promising support for the preparation of extremely efficient and stable SACs, which can be used in a broad range of future industrial reactions.

Journal ArticleDOI
13 Sep 2019-Science
TL;DR: A study of the PtSb system showed that the tetrahexahedron shape resulted from the evaporative removal of Sb from the initial alloy—a shape-regulating process fundamentally different from solution-phase, ligand-dependent processes.
Abstract: Tetrahexahedral particles (~10 to ~500 nanometers) composed of platinum (Pt), palladium, rhodium, nickel, and cobalt, as well as a library of bimetallic compositions, were synthesized on silicon wafers and on catalytic supports by a ligand-free, solid-state reaction that used trace elements [antimony (Sb), bismuth (Bi), lead, or tellurium] to stabilize high-index facets. Both simulation and experiment confirmed that this method stabilized the {210} planes. A study of the PtSb system showed that the tetrahexahedron shape resulted from the evaporative removal of Sb from the initial alloy-a shape-regulating process fundamentally different from solution-phase, ligand-dependent processes. The current density at a fixed potential for the electro-oxidation of formic acid with a commercial Pt/carbon catalyst increased by a factor of 20 after transformation with Bi into tetrahexahedral particles.

Journal ArticleDOI
TL;DR: In this article, the density function theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) were combined to rationalize the Pd-N metal-support interaction (MSI) influences the catalysis.
Abstract: Nitrogen dopants of carbon materials remarkably improve the stability and tune the catalytic performance of supported metal nanoparticles. However, it is still controversial how the Pd–N metal–support-interaction (MSI) influences the catalysis. Herein, the density function theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) were combined to rationalize the Pd–N MSI. DFT calculations suggested that Pd adsorbs on N-doped carbon nanotubes (N@CNTs) and donates electrons to pyridinic nitrogen. It was further experimentally proved using XPS through a titration method by gradually increasing Pd content or changing the N content of support by a postheat-treatment. The Pd catalysts display electron-deficiency depending on the intensity of MSI between Pd and pyridinic nitrogen, measured by Pd 3d binding energy. It paves the way to the rational synthesis of Pd catalysts with a tunable electronic state for the targeted catalytic reaction. Using the hydrogenation of nitrobenzene as the probe reaction,...

Journal ArticleDOI
TL;DR: Results reveal the unique structural characteristic of Al2O3 overlayers on metal surfaces coated by ALD method and provide a practical strategy to explore stable and efficient supported Pd catalysts for methane combustion.
Abstract: Supported Pd catalysts are active in catalyzing the highly exothermic methane combustion reaction but tend to be deactivated owing to local hyperthermal environments. Herein we report an effective approach to stabilize Pd/SiO2 catalysts with porous Al2 O3 overlayers coated by atomic layer deposition (ALD). 27 Al magic angle spinning NMR analysis showed that Al2 O3 overlayers on Pd particles coated by the ALD method are rich in pentacoordinated Al3+ sites capable of strongly interacting with adjacent surface PdOx phases on supported Pd particles. Consequently, Al2 O3 -decorated Pd/SiO2 catalysts exhibit active and stable PdOx and Pd-PdOx structures to efficiently catalyze methane combustion between 200 and 850 °C. These results reveal the unique structural characteristics of Al2 O3 overlayers on metal surfaces coated by the ALD method and provide a practical strategy to explore stable and efficient supported Pd catalysts for methane combustion.

Journal ArticleDOI
TL;DR: A combined experimental and computational study shows that the oxidative addition is not the single kinetically relevant step in different cross-coupling reactions catalyzed by sub-nanometer Pt or Pd species, since the reactivity control is shifted toward subtle changes in the base.
Abstract: The assumption that oxidative addition is the key step during the cross-coupling reaction of aryl halides has led to the development of a plethora of increasingly complex metal catalysts, thereby obviating in many cases the exact influence of the base, which is a simple, inexpensive, and necessary reagent for this paramount transformation. Here, a combined experimental and computational study shows that the oxidative addition is not the single kinetically relevant step in different cross-coupling reactions catalyzed by sub-nanometer Pt or Pd species, since the reactivity control is shifted toward subtle changes in the base. The exposed metal atoms in the cluster cooperate to enable an extremely easy oxidative addition of the aryl halide, even chlorides, and allow the base to bifurcate the coupling. With sub-nanometer Pd species, amines drive to the Heck reaction, carbonate drives to the Sonogahira reaction, and phosphate drives to the Suzuki reaction, while for Pt clusters and single atoms, good conversio...

Journal ArticleDOI
TL;DR: Mechanistic investigations and density functional theory studies suggest that a photoinduced inner-sphere mechanism is operative in which a barrierless, single-electron transfer oxidative addition of the alkyl halide to Pd0 is key for the efficient transformation.
Abstract: Visible-light induced, palladium catalyzed alkylations of α,β-unsaturated acids with unactivated alkyl bromides are described. A variety of primary, secondary, and tertiary alkyl bromides are activated by the photoexcited palladium metal catalyst to provide a series of olefins at room temperature under mild reaction conditions. Mechanistic investigations and density functional theory (DFT) studies suggest that a photoinduced inner-sphere mechanism is operative in which a barrierless, single-electron transfer oxidative addition of the alkyl halide to Pd0 is key for the efficient transformation.

Journal ArticleDOI
TL;DR: In this paper, the ability of the hemilabile (P,N) MeDalphos ligand to trigger oxidative addition of iodoarenes to gold has been thoroughly studied.
Abstract: The ability of the hemilabile (P,N) MeDalphos ligand to trigger oxidative addition of iodoarenes to gold has been thoroughly studied. Competition experiments and Hammett correlations substantiate a clear preference of gold for electron-enriched substrates both in stoichiometric oxidative addition reactions and in catalytic C–C cross-coupling with 1,3,5-trimethoxybenzene. This feature markedly contrasts with the higher reactivity of electron-deprived substrates typically encountered with palladium. Based on DFT calculations and detailed analysis of the key transition states (using NBO, CDA and ETS-NOCV methods in particular), the different behavior of the two metals is proposed to result from inverse electron flow between the substrate and metal. Indeed, oxidative addition of iodobenzene is associated with a charge transfer from the substrate to the metal at the transition state for gold, but opposite for palladium. The higher electrophilicity of the gold center favors electron-rich substrates while important back-donation from palladium favors electron-poor substrates. Facile oxidative addition of iodoarenes combined with the propensity of gold(III) complexes to readily react with electron-rich (hetero)arenes prompted us to apply the (MeDalphos)AuCl complex in the catalytic arylation of indoles, a challenging but very important transformation. The gold complex proved to be very efficient, general and robust. It displays complete regioselectivity for C3 arylation, it tolerates a variety of functional groups at both the iodoarene and indole partners (NO2, CO2Me, Br, OTf, Bpin, OMe…) and it proceeds under mild conditions (75 °C, 2 h).

Journal ArticleDOI
01 Sep 2019-Fuel
TL;DR: In this article, a simple one-step preparation of a novel graphitic carbon nitride/Polyaniline/Palladium nanoparticles (g-C3N4/PANI/PdNPs) based nanohybrid composite modified screen-printed electrode (SPE) for the efficient electro-oxidation reaction of methanol.

Journal ArticleDOI
08 Aug 2019-Chem
TL;DR: The use of the palladium-catalyzed inter-and/or intra-molecular C-H bond arylations in the building of various π-extended (hetero)aromatic structures has emerged as a suitable alternative to the previous multi-step synthesis as discussed by the authors.

Journal ArticleDOI
TL;DR: In this paper, polyethyleneimine/polycaprolactone/Pd nanoparticles (PEI/PCL@PdNPs) composite catalysts were successfully designed and prepared by electrospinning and reduction methods using PEI/pCL elexctrospun fiber as carrier.
Abstract: Nano-sized palladium nanoparticles showed high catalytic activity with severe limitations in catalytic field due to the tendency to aggregate. A solid substrate with large specific surface area is an ideal carrier for palladium nanoparticles. In present work, polyethyleneimine/polycaprolactone/Pd nanoparticles (PEI/PCL@PdNPs) composite catalysts were successfully designed and prepared by electrospinning and reduction methods using PEI/PCL elexctrospun fiber as carrier. The added PEI component effectively regulated the microscopic morphology of the PEI/PCL fibers, following a large number of pit structures which increased the specific surface area of the electrospun fibers and provided active sites for loading of the palladium particles. The obtained PEI/PCL@PdNPs catalysts for reductions of 4-nitrophenol (4-NP) and 2-nitroaniline (2-NA) exhibited extremely efficient, stable, and reusable catalytic performance. It was worth mentioning that the reaction rate constant of catalytic reduction of 4-NP was as high as 0.16597 s−1. Therefore, we have developed a highly efficient catalyst with potential applications in the field of catalysis and water treatment.

Journal ArticleDOI
01 Feb 2019-Small
TL;DR: Recent advances in the preparation of Pd-based nanoarchitectures through solution-phase chemical reduction and electrochemical deposition methods are summarized.
Abstract: Palladium (Pd) plays an important role in numerous catalytic reactions, such as methanol and ethanol oxidation, oxygen reduction, hydrogenation, coupling reactions, and carbon monoxide oxidation. Creating Pd-based nanoarchitectures with increased active surface sites, higher density of low-coordinated atoms, and maximized surface coverage for the reactants is important. To address the limitations of pure Pd, various Pd-based nanoarchitectures, including alloys, intermetallics, and supported Pd nanomaterials, have been fabricated by combining Pd with other elements with similar or higher catalytic activity for many catalytic reactions. Herein, recent advances in the preparation of Pd-based nanoarchitectures through solution-phase chemical reduction and electrochemical deposition methods are summarized. Finally, the trend and future outlook in the development of Pd nanocatalysts toward practical catalytic applications are discussed.

Journal ArticleDOI
TL;DR: In this article, Pd-Schiff base complex grafted on Cu-MOF exhibits excellent catalytic activity to produce 147 mL of gas (H2 + CO2) with the turnover frequency (TOF) value of 412 h−1 towards the dehydrogenation of formic acid without any additives.

Journal ArticleDOI
TL;DR: Two methods are reported for the 1,2- and 1,1-arylboration of α-methyl vinyl arenes and enantioselective variants of both processes are presented as well as mechanistic investigations.
Abstract: Two methods are reported for the 1,2- and 1,1-arylboration of α-methyl vinyl arenes. In the case of 1,2-arylboration, the formation of a quaternary center occurred through a rare cross-coupling reaction of a tertiary organometallic complex. 1,1-Arylboration was enabled by catalyst optimization and occurred through a β-hydride elimination/reinsertion cascade. Enantioselective variants of both processes are presented as well as mechanistic investigations.

Journal ArticleDOI
TL;DR: In this paper, the three-dimensional ordered macroporous (3DOM) CeO2-supported Au-Pd alloys were synthesized using polymethyl methacrylate-templating and polyvinyl alcohol-protected reduction methods.
Abstract: The three-dimensionally ordered macroporous (3DOM) CeO2-supported Au–Pd alloys (xAuPdy/3DOM CeO2, x is the total loading (wt%) of Au and Pd, and y is the Pd/Au molar ratio) were synthesized using the polymethyl methacrylate-templating and polyvinyl alcohol-protected reduction methods. The samples were characterized by a number of analytical techniques, and their catalytic performance was evaluated for the combustion of trichloroethylene (TCE). It is found that the xAuPdy/3DOM CeO2 samples displayed a good-quality 3DOM architecture, and the noble metal nanoparticles (NPs) with a size of 3–4 nm were uniformly dispersed on the skeleton surface of 3DOM CeO2. Among all of the samples, 2.85AuPd1.87/3DOM CeO2 exhibited the highest catalytic activity, with the temperature at a TCE conversion of 90% (T90%) being 415 °C at a space velocity of 20,000 mL/(g h). Furthermore, the 2.85AuPd1.87/3DOM CeO2 sample possessed the lowest apparent activation energy (33 kJ/mol), excellent catalytic stability, and good moisture- and chlorine-tolerant behaviors. Alloying of Au with Pd changed the pathway of TCE oxidation and reduced formation of perchloroethylene. We conclude that the excellent catalytic performance for TCE combustion of 2.85AuPd1.87/3DOM CeO2 was associated with the highly dispersed AuPd1.87 alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between AuPd1.87 NPs and 3DOM CeO2 as well as the high-quality 3DOM structure and high surface acidity.