scispace - formally typeset
Search or ask a question

Showing papers on "Phase transition published in 2018"


BookDOI
08 Mar 2018
TL;DR: In this article, the authors describe how phase transitions occur in practice in practice, and describe the role of models in the process of phase transitions in the Ising Model and the Role of Models in Phase Transition.
Abstract: Introduction * Scaling and Dimensional Analysis * Power Laws in Statistical Physics * Some Important Questions * Historical Development * Exercises How Phase Transitions Occur In Principle * Review of Statistical Mechanics * The Thermodynamic Limit * Phase Boundaries and Phase Transitions * The Role of Models * The Ising Model * Analytic Properties of the Ising Model * Symmetry Properties of the Ising Model * Existence of Phase Transitions * Spontaneous Symmetry Breaking * Ergodicity Breaking * Fluids * Lattice Gases * Equivalence in Statistical Mechanics * Miscellaneous Remarks * Exercises How Phase Transitions Occur In Practice * Ad Hoc Solution Methods * The Transfer Matrix * Phase Transitions * Thermodynamic Properties * Spatial Correlations * Low Temperature Expansion * Mean Field Theory * Exercises Critical Phenomena in Fluids * Thermodynamics * Two-Phase Coexistence * Vicinity of the Critical Point * Van der Waals Equation * Spatial Correlations * Measurement of Critical Exponents * Exercises Landau Theory * Order Parameters * Common Features of Mean Field Theories * Phenomenological Landau Theory * Continuous Phase Transitions * Inhomogeneous Systems * Correlation Functions * Exercises Fluctuations and the Breakdown of Landau Theory * Breakdown of Microscopic Landau Theory * Breakdown of Phenomenological Landau Theory * The Gaussian Approximation * Critical Exponents * Exercises Scaling in Static, Dynamic and Non-Equilibrium Phenomena * The Static-Scaling Hypothesis * Other Forms of the Scaling Hypothesis * Dynamic Critical Phenomena * Scaling in the Approach to Equilibrium * Summary The Renormalisation Group * Block Spins * Basic Ideas of the Renormalisation Group * Fixed Points * Origin of Scaling * RG in Differential Form * RG for the Two Dimensional Ising Model * First Order Transitions and Non-Critical Properties * RG for the Correlation Function * Crossover Phenomena * Correlations to Scaling * Finite Size Scaling Anomalous Dimensions Far From Equilibrium * Introduction * Similarity Solutions * Anomalous Dimensions in Similarity Solutions * Renormalisation * Perturbation Theory for Barenblatts Equation * Fixed Points * Conclusion Continuous Symmetry * Correlation in the Ordered Phase * Kosterlitz-Thouless Transition Critical Phenomena Near Four Dimensions * Basic Idea of the Epsilon Expansion * RG for the Gaussian Model * RG Beyond the Gaussian Approximation * Feyman Diagrams * The RG Recursion Relations * Conclusion

2,245 citations


Journal ArticleDOI
TL;DR: In monolayer CrI3, doping significantly modifies the saturation magnetization, coercive force and Curie temperature, showing strengthened/weakened magnetic order with hole/electron doping, and the result reveals a strongly doping-dependent interlayer exchange coupling, which enables robust switching of magnetization in bilayerCrI3 by small gate voltages.
Abstract: The atomic thickness of two-dimensional (2D) materials provides a unique opportunity to control material properties and engineer new functionalities by electrostatic doping. Electrostatic doping has been demonstrated to tune the electrical and optical properties of 2D materials in a wide range, as well as to drive the electronic phase transitions. The recent discovery of atomically thin magnetic insulators has opened up the prospect of electrical control of magnetism and new devices with unprecedented performance. Here we demonstrate control of the magnetic properties of monolayer and bilayer CrI3 by electrostatic doping using a dual-gate field-effect device structure. In monolayer CrI3, doping significantly modifies the saturation magnetization, coercive force and Curie temperature, showing strengthened (weakened) magnetic order with hole (electron) doping. Remarkably, in bilayer CrI3 doping drastically changes the interlayer magnetic order, causing a transition from an antiferromagnetic ground state in the pristine form to a ferromagnetic ground state above a critical electron density. The result reveals a strongly doping-dependent interlayer exchange coupling, which enables robust switching of magnetization in bilayer CrI3 by small gate voltages.

564 citations


Journal ArticleDOI
TL;DR: A doping strategy to induce a phase transition in cobalt selenide and boost H2-evolution performance is presented, with striking catalysis performance can be attributed to the favorable electronic structure and local coordination environment created by this doping-induced structural phase transition strategy.
Abstract: Transition metal dichalcogenide materials have been explored extensively as catalysts to negotiate the hydrogen evolution reaction, but they often run at a large excess thermodynamic cost. Although activating strategies, such as defects and composition engineering, have led to remarkable activity gains, there remains the requirement for better performance that aims for real device applications. We report here a phosphorus-doping-induced phase transition from cubic to orthorhombic phases in CoSe2. It has been found that the achieved orthorhombic CoSe2 with appropriate phosphorus dopant (8 wt%) needs the lowest overpotential of 104 mV at 10 mA cm−2 in 1 M KOH, with onset potential as small as −31 mV. This catalyst demonstrates negligible activity decay after 20 h of operation. The striking catalysis performance can be attributed to the favorable electronic structure and local coordination environment created by this doping-induced structural phase transition strategy. Transition metal dichalcogenides represent an exciting class of earth-abundant hydrogen-from-water electrocatalysts, although low efficiencies limit commercialization. Here, authors present a doping strategy to induce a phase transition in cobalt selenide and boost H2-evolution performance.

316 citations


Journal ArticleDOI
TL;DR: T theoretical studies reveal that cubic GeTe has superior thermoelectric behavior, which is linked to (1) the two valence bands to enhance the electronic transport coefficients and (2) stronger enharmonic phonon-phonon interactions to ensure a lower intrinsic thermal conductivity.
Abstract: GeTe with rhombohedral-to-cubic phase transition is a promising lead-free thermoelectric candidate. Herein, theoretical studies reveal that cubic GeTe has superior thermoelectric behavior, which is linked to (1) the two valence bands to enhance the electronic transport coefficients and (2) stronger enharmonic phonon-phonon interactions to ensure a lower intrinsic thermal conductivity. Experimentally, based on Ge1-x Sbx Te with optimized carrier concentration, a record-high figure-of-merit of 2.3 is achieved via further doping with In, which induces the distortion of the density of states near the Fermi level. Moreover, Sb and In codoping reduces the phase-transition temperature to extend the better thermoelectric behavior of cubic GeTe to low temperature. Additionally, electronic microscopy characterization demonstrates grain boundaries, a high-density of stacking faults, and nanoscale precipitates, which together with the inevitable point defects result in a dramatically decreased thermal conductivity. The fundamental investigation and experimental demonstration provide an important direction for the development of high-performance Pb-free thermoelectric materials.

301 citations


Journal ArticleDOI
13 Jul 2018-Science
TL;DR: The ability to control and read out the state of individual spins provides direct access to several order parameters, which were used to determine the lattice’s magnetic phases as well as critical disorder and one of its universal exponents.
Abstract: Understanding magnetic phases in quantum mechanical systems is one of the essential goals in condensed matter physics, and the advent of prototype quantum simulation hardware has provided new tools for experimentally probing such systems We report on the experimental realization of a quantum simulation of interacting Ising spins on three-dimensional cubic lattices up to dimensions 8 × 8 × 8 on a D-Wave processor (D-Wave Systems, Burnaby, Canada) The ability to control and read out the state of individual spins provides direct access to several order parameters, which we used to determine the lattice’s magnetic phases as well as critical disorder and one of its universal exponents By tuning the degree of disorder and effective transverse magnetic field, we observed phase transitions between a paramagnetic, an antiferromagnetic, and a spin-glass phase

254 citations


Journal ArticleDOI
TL;DR: The results show that the variety of yielding behaviors found in amorphous materials does not necessarily result from the diversity of particle interactions or microscopic dynamics but is instead unified by carefully considering the role of the initial stability of the system.
Abstract: We combine an analytically solvable mean-field elasto-plastic model with molecular dynamics simulations of a generic glass former to demonstrate that, depending on their preparation protocol, amorphous materials can yield in two qualitatively distinct ways. We show that well-annealed systems yield in a discontinuous brittle way, as metallic and molecular glasses do. Yielding corresponds in this case to a first-order nonequilibrium phase transition. As the degree of annealing decreases, the first-order character becomes weaker and the transition terminates in a second-order critical point in the universality class of an Ising model in a random field. For even more poorly annealed systems, yielding becomes a smooth crossover, representative of the ductile rheological behavior generically observed in foams, emulsions, and colloidal glasses. Our results show that the variety of yielding behaviors found in amorphous materials does not necessarily result from the diversity of particle interactions or microscopic dynamics but is instead unified by carefully considering the role of the initial stability of the system.

254 citations


Journal ArticleDOI
TL;DR: In this paper, the authors studied SU(N ) Quantum Chromodynamics (QCD) in 3+1 dimensions with degenerate fundamental quarks with mass m and a θ-parameter.
Abstract: We study SU(N ) Quantum Chromodynamics (QCD) in 3+1 dimensions with N f degenerate fundamental quarks with mass m and a θ-parameter. For generic m and θ the theory has a single gapped vacuum. However, as θ is varied through θ = π for large m there is a first order transition. For N f = 1 the first order transition line ends at a point with a massless η′ particle (for all N ) and for N f > 1 the first order transition ends at m = 0, where, depending on the value of N f , the IR theory has free Nambu-Goldstone bosons, an interacting conformal field theory, or a free gauge theory. Even when the 4d bulk is smooth, domain walls and interfaces can have interesting phase transitions separating different 3d phases. These turn out to be the phases of the recently studied 3d Chern-Simons matter theories, thus relating the dynamics of QCD4 and QCD3, and, in particular, making contact with the recently discussed dualities in 2+1 dimensions. For example, when the massless 4d theory has an SU(N f ) sigma model, the domain wall theory at low (nonzero) mass supports a 3d massless $$ \mathbb{C}{\mathrm{\mathbb{P}}}^{N_f-1} $$ nonlinear σ-model with a Wess-Zumino term, in agreement with the conjectured dynamics in 2+1 dimensions.

253 citations


Journal ArticleDOI
TL;DR: A model-independent parameter allows evaluating the order of phase transition without any subjective interpretations, as it is shown for different types of materials and for the Bean–Rodbell model.
Abstract: The ideal magnetocaloric material would lay at the borderline of a first-order and a second-order phase transition. Hence, it is crucial to unambiguously determine the order of phase transitions for both applied magnetocaloric research as well as the characterization of other phase change materials. Although Ehrenfest provided a conceptually simple definition of the order of a phase transition, the known techniques for its determination based on magnetic measurements either provide erroneous results for specific cases or require extensive data analysis that depends on subjective appreciations of qualitative features of the data. Here we report a quantitative fingerprint of first-order thermomagnetic phase transitions: the exponent n from field dependence of magnetic entropy change presents a maximum of n > 2 only for first-order thermomagnetic phase transitions. This model-independent parameter allows evaluating the order of phase transition without any subjective interpretations, as we show for different types of materials and for the Bean–Rodbell model. Magnetocaloric materials often perform best when their magnetic transitions are at the boundary between first- and second-order behavior. Here the authors propose a simple criterion to determine the order of a transition, which may accelerate future magnetocaloric material searches.

248 citations


Journal ArticleDOI
TL;DR: In this article, the Liouvillian spectral gap has been studied in the critical region of the steady-state density matrix and the eigenmatrix of the spectral gap.
Abstract: A state of an open quantum system is described by a density matrix, whose dynamics is governed by a Liouvillian superoperator. Within a general framework, we explore fundamental properties of both first-order dissipative phase transitions and second-order dissipative phase transitions associated with a symmetry breaking. In the critical region, we determine the general form of the steady-state density matrix and of the Liouvillian eigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We illustrate our exact results by studying some paradigmatic quantum optical models exhibiting critical behavior.

246 citations


Journal ArticleDOI
TL;DR: These insights enable to obtain high quality Ruddlesden-Popper reduced-dimensional hybrid perovskite films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties.
Abstract: Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA)2 (MA)3 Pb4 I13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA)2 (MA)3 Pb4 I13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices.

229 citations


Journal ArticleDOI
TL;DR: Versatile and complex motions enabled by the enhanced photocontrol of actuation are demonstrated, including plastic "athletes" that can execute light-controlled push-ups or sit-ups, and a light-driven caterpillar-inspired walker that can crawl forward on a ratcheted substrate at a speed of about 13 mm min-1.
Abstract: A near-infrared-light (NIR)- and UV-light-responsive polymer nanocomposite is synthesized by doping polymer-grafted gold nanorods into azobenzene liquid-crystalline dynamic networks (AuNR-ALCNs). The effects of the two different photoresponsive mechanisms, i.e., the photochemical reaction of azobenzene and the photothermal effect from the surface plasmon resonance of the AuNRs, are investigated by monitoring both the NIR- and UV-light-induced contraction forces of the oriented AuNR-ALCNs. By taking advantage of the material's easy processability, bilayer-structured actuators can be fabricated to display photocontrollable bending/unbending directions, as well as localized actuations through programmed alignment of azobenzene mesogens in selected regions. Versatile and complex motions enabled by the enhanced photocontrol of actuation are demonstrated, including plastic "athletes" that can execute light-controlled push-ups or sit-ups, and a light-driven caterpillar-inspired walker that can crawl forward on a ratcheted substrate at a speed of about 13 mm min-1 . Moreover, the photomechanical effects arising from the two types of light-triggered molecular motion, i.e., the trans-cis photoisomerization and a liquid-crystalline-isotropic phase transition of the azobenzene mesogens, are added up to design a polymer "crane" that is capable of performing light-controlled, robot-like, concerted macroscopic motions including grasping, lifting up, lowering down, and releasing an object.


Journal ArticleDOI
02 Nov 2018-Science
TL;DR: It is shown that atomic disordering in photoexcited vanadium dioxide (VO2) is central to the transition mechanism and that, after photoexcitation, the system explores a large volume of phase space on a time scale comparable to that of a single phonon oscillation.
Abstract: Many ultrafast solid phase transitions are treated as chemical reactions that transform the structures between two different unit cells along a reaction coordinate, but this neglects the role of disorder. Although ultrafast diffraction provides insights into atomic dynamics during such transformations, diffraction alone probes an averaged unit cell and is less sensitive to randomness in the transition pathway. Using total scattering of femtosecond x-ray pulses, we show that atomic disordering in photoexcited vanadium dioxide (VO2) is central to the transition mechanism and that, after photoexcitation, the system explores a large volume of phase space on a time scale comparable to that of a single phonon oscillation. These results overturn the current understanding of an archetypal ultrafast phase transition and provide new microscopic insights into rapid evolution toward equilibrium in photoexcited matter.

Journal ArticleDOI
TL;DR: The production of gravitational waves by an electroweak first-order phase transition is reviewed and a good candidate for detection at next-generation gravitational wave detectors, such as LISA, is reviewed.
Abstract: We review the production of gravitational waves by an electroweak first-order phase transition. The resulting signal is a good candidate for detection at next-generation gravitational wave detector...

Journal ArticleDOI
TL;DR: In this article, the authors review different types of phase transitions that can appear in our cosmic history, and their applications and experimental signatures in particular in the context of exciting gravitational waves, which could be potentially be constrained by LIGO/VIRGO, Kagra, and eLISA.
Abstract: The study of cosmic phase transitions are of central interest in modern cosmology. In the standard model of cosmology the Universe begins in a very hot state, right after at the end of inflation via the process of reheating/preheating, and cools to its present temperature as the Universe expands. Both new and existing physics at any scale can be responsible for catalyzing either first, second or cross over phase transition, which could be either thermal or non-thermal with a potential observable imprints. Thus this field prompts a rich dialogue between gravity, particle physics and cosmology. It is all but certain that at least two cosmic phase transitions have occurred - the electroweak and the QCD phase transitions. The focus of this review will be primarily on phase transitions above such scales, We review different types of phase transitions that can appear in our cosmic history, and their applications and experimental signatures in particular in the context of exciting gravitational waves, which could be potentially be constrained by LIGO/VIRGO, Kagra, and eLISA.

Journal ArticleDOI
30 Nov 2018-Science
TL;DR: An isostructural, purely electronically driven metal-insulator transition is demonstrated in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide, to provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
Abstract: The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.

Journal ArticleDOI
TL;DR: The results demonstrate how the topological states of open non-Hermitian systems can be explored via far-field measurements, thus paving a way to the design of metasurfaces with unique scattering characteristics controlled via topological effects.
Abstract: Topological phase transitions in condensed matter systems give rise to exotic states of matter such as topological insulators, superconductors, and superfluids. Photonic topological systems open a whole new realm of research and technological opportunities, exhibiting a number of important distinctions from their condensed matter counterparts. Photonic modes can leak into free space, which makes it possible to probe topological photonic phases by spectroscopic means via Fano resonances. Based on this idea, we develop a technique to retrieve the topological properties of all-dielectric metasurfaces from the measured far-field scattering characteristics. Collected angle-resolved spectra provide the momentum-dependent frequencies and lifetimes of the photonic modes that enable the retrieval of the effective Hamiltonian and extraction of the topological invariant. Our results demonstrate how the topological states of open non-Hermitian systems can be explored via far-field measurements, thus paving a way to the design of metasurfaces with unique scattering characteristics controlled via topological effects.

Journal ArticleDOI
TL;DR: It is shown that an out-of-time-ordered OTO correlator can also be used to dynamically detect equilibrium as well as nonequilibrium phase transitions in Ising chains.
Abstract: Out-of-time-ordered (OTO) correlators have developed into a central concept quantifying quantum information transport, information scrambling, and quantum chaos. In this Letter, we show that such an OTO correlator can also be used to dynamically detect equilibrium as well as nonequilibrium phase transitions in Ising chains. We study OTO correlators of an order parameter both in equilibrium and after a quantum quench for different variants of transverse-field Ising models in one dimension, including the integrable one as well as nonintegrable and long-range extensions. We find for all the studied models that the OTO correlator in ground states detects the quantum phase transition. After a quantum quench from a fully polarized state, we observe numerically for the short-range models that the asymptotic long-time value of the OTO correlator signals still the equilibrium critical points and ordered phases. For the long-range extension, the OTO correlator instead determines a dynamical quantum phase transition in the model. We discuss how our findings can be observed in current experiments of trapped ions or Rydberg atoms.

Journal ArticleDOI
TL;DR: In this paper, a trace of the phase-ordering kinetics of a charge density wave system demonstrates the potential of ultrafast low-energy electron diffraction for studying phase transitions and ordering phenomena at surfaces and in low-dimensional systems.
Abstract: A tracing of the phase-ordering kinetics of a charge density wave system demonstrates the potential of ultrafast low-energy electron diffraction for studying phase transitions and ordering phenomena at surfaces and in low-dimensional systems.

Journal ArticleDOI
TL;DR: It was found that the large activation barrier for the transition from the tetragonal/orthorhombic to the monoclinic phase, which is the stable phase at room temperature, suppresses the phase transition, and thus, plays a critical role in the emergence of ferroelectricity.
Abstract: Hf1-xZrxO2 (x ∼ 0.5-0.7) has been the leading candidate of ferroelectric materials with a fluorite crystal structure showing highly promising compatibility with complementary metal oxide semiconductor devices. Despite the notable improvement in device performance and processing techniques, the origin of its ferroelectric crystalline phase (space group: Pca21) formation has not been clearly elucidated. Several recent experimental and theoretical studies evidently showed that the interface and grain boundary energies of the higher symmetry phases (orthorhombic and tetragonal) contribute to the stabilization of the metastable non-centrosymmetric orthorhombic phase or tetragonal phase. However, there was a clear quantitative discrepancy between the theoretical expectation and experiment results, suggesting that the thermodynamic model may not provide the full explanation. This work, therefore, focuses on the phase transition kinetics during the cooling step after the crystallization annealing. It was found that the large activation barrier for the transition from the tetragonal/orthorhombic to the monoclinic phase, which is the stable phase at room temperature, suppresses the phase transition, and thus, plays a critical role in the emergence of ferroelectricity.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive overview of the spectra predicted by phase transitions triggered by states from a large variety of dark sector models, which are functions of the quantum numbers and (self-) couplings of the scalar that triggers the dark phase transition.
Abstract: In anticipation of upcoming gravitational wave experiments, we provide a comprehensive overview of the spectra predicted by phase transitions triggered by states from a large variety of dark sector models. Such spectra are functions of the quantum numbers and (self-) couplings of the scalar that triggers the dark phase transition. We classify dark sectors that give rise to a first order phase transition and perform a numerical scan over the thermal parameter space. We then characterize scenarios in which a measurement of a new source of gravitational waves could allow us to discriminate between models with differing particle content.

Journal ArticleDOI
TL;DR: This work builds for the first time a substantial magnetic phase diagram under lateral strain and charge doping, the two factors that are easily modulated in single-layer CrI3via substrate and gating controls, and finds that the phase transition under compressive strain is insensitive to Charge doping, whereas the phase Transition under tensile strain is modulated by electron doping significantly.
Abstract: The recent discovery of ferromagnetic single-layer CrI3 creates ample opportunities for studying the fundamental properties and the spintronic applications of atomically thin magnets. Through first-principles calculations and model Hamiltonian simulations, here we build for the first time a substantial magnetic phase diagram under lateral strain and charge doping, the two factors that are easily modulated in single-layer CrI3via substrate and gating controls. We demonstrate that both lateral strain and charge doping efficiently change the coupling between the local spins and thus have unexpected effects on the magnetic properties of CrI3. In particular, the strain tunes the magnetic order and anisotropy: a compressive strain leads to a phase transition from a ferromagnetic insulator to an antiferromagnetic insulator, while a tensile strain can flip the magnetic orientation from off-plane to in-plane. Furthermore, we find that the phase transition under compressive strain is insensitive to charge doping, whereas the phase transition under tensile strain is modulated by electron doping significantly. Our predicted magnetic phase diagram and rationalized analysis indicate the single-layer CrI3 to be an ideal system to harness both basic magnetic physics and building blocks for magnetoelastic applications.

Journal ArticleDOI
TL;DR: In this article, the authors analyze the theoretical and phenomenological considerations for the electroweak phase transition and dark matter in an extension of the standard model with a complex scalar singlet (cxSM).
Abstract: We analyze the theoretical and phenomenological considerations for the electroweak phase transition and dark matter in an extension of the standard model with a complex scalar singlet (cxSM). In contrast with earlier studies, we use a renormalization group improved scalar potential and treat its thermal history in a gauge-invariant manner. We find that the parameter space consistent with a strong first-order electroweak phase transition (SFOEWPT) and present dark matter phenomenological constraints is significantly restricted compared to results of a conventional, gauge-noninvariant analysis. In the simplest variant of the cxSM, recent LUX data and a SFOEWPT require a dark matter mass close to half the mass of the standard model-like Higgs boson. We also comment on various caveats regarding the perturbative treatment of the phase transition dynamics.

Journal ArticleDOI
TL;DR: The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses.
Abstract: We observe the joint spin-spatial (spinor) self-organization of a two-component Bose-Einstein condensate (BEC) strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke phase transition is driven by an off-resonant Raman transition formed from a classical pump field and the emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard configurations of an emergent 2D lattice. The resulting spinor density-wave polariton condensate is observed by directly detecting the atomic spin and momentum state and by holographically reconstructing the phase of the emitted cavity field. The latter provides a direct measure of the spin state, and a spin-spatial domain wall is observed. The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses.

Journal ArticleDOI
TL;DR: In this article, it was shown that the QCD condensates which subsequently form give an additional contribution to the radion/dilaton potential, an effect which had been ignored so far, which significantly reduces the barrier in the potential and allows the phase transition to complete in a substantially larger region of parameter space.
Abstract: Phase transitions associated with nearly conformal dynamics are known to lead to significant supercooling. A notorious example is the phase transition in Randall-Sundrum models or their CFT duals. In fact, it was found that the phase transition in this case is first-order and the tunneling probability for the radion/dilaton is so small that the system typically remains trapped in the false vacuum and the phase transition never completes. The universe then keeps expanding and cooling. Eventually the temperature drops below the QCD scale. We show that the QCD condensates which subsequently form give an additional contribution to the radion/dilaton potential, an effect which had been ignored so far. This significantly reduces the barrier in the potential and allows the phase transition to complete in a substantially larger region of parameter space. Due to the supercooling, electroweak symmetry is then broken simultaneously. This class of models therefore naturally leads to an electroweak phase transition taking place at or below QCD temperatures, with interesting cosmological implications and signatures.

Journal ArticleDOI
TL;DR: The implementation of the Dicke model in fully controllable trapped ion arrays can open a path for the generation of highly entangled states useful for enhanced metrology and the observation of scrambling and quantum chaos in a many-body system.
Abstract: We use a self-assembled two-dimensional Coulomb crystal of ∼70 ions in the presence of an external transverse field to engineer a simulator of the Dicke Hamiltonian, an iconic model in quantum optics which features a quantum phase transition between a superradiant (ferromagnetic) and a normal (paramagnetic) phase. We experimentally implement slow quenches across the quantum critical point and benchmark the dynamics and the performance of the simulator through extensive theory-experiment comparisons which show excellent agreement. The implementation of the Dicke model in fully controllable trapped ion arrays can open a path for the generation of highly entangled states useful for enhanced metrology and the observation of scrambling and quantum chaos in a many-body system.

Journal ArticleDOI
19 Dec 2018-Neuron
TL;DR: It is shown that gap junctions contribute to the maintenance of criticality and that, during interactions with the environment, the system is transiently displaced to a more ordered regime, conceivably to limit the potential sensory representations and motor outcomes.


Journal ArticleDOI
TL;DR: Spinodal fluctuations at dislocations and grain boundaries in an iron alloy are observed, which may be precursors in a multistep nucleation process.
Abstract: Analysis and design of materials and fluids requires understanding of the fundamental relationships between structure, composition, and properties. Dislocations and grain boundaries influence microstructure evolution through the enhancement of diffusion and by facilitating heterogeneous nucleation, where atoms must overcome a potential barrier to enable the early stage of formation of a phase. Adsorption and spinodal decomposition are known precursor states to nucleation and phase transition; however, nucleation remains the less well-understood step in the complete thermodynamic sequence that shapes a microstructure. Here, we report near-atomic-scale observations of a phase transition mechanism that consists in solute adsorption to crystalline defects followed by linear and planar spinodal fluctuations in an Fe-Mn model alloy. These fluctuations provide a pathway for austenite nucleation due to the higher driving force for phase transition in the solute-rich regions. Our observations are supported by thermodynamic calculations, which predict the possibility of spinodal decomposition due to magnetic ordering.

Journal ArticleDOI
TL;DR: In this paper, the authors define a thermal resummation procedure based on partial dressing (PD) for general BSM calculations of phase transitions beyond the high-temperature approximation, which is numerically nearly as efficient as old incorrect methods, while yielding identical results to the full PD calculation.
Abstract: The consequences of phase transitions in the early universe are becoming testable in a variety of manners, from colliders physics to gravitational wave astronomy. In particular one phase transition we know of, the electroweak phase transition (EWPT), could potentially be first order in BSM scenarios and testable in the near future. If confirmed this could provide a mechanism for baryogenesis, which is one of the most important outstanding questions in physics. To reliably make predictions it is necessary to have full control of the finite temperature scalar potentials. However, as we show the standard methods used in BSM physics to improve phase transition calculations, resumming hard thermal loops, introduces significant errors into the scalar potential. In addition, the standard methods make it impossible to match theories to an EFT description reliably. In this paper we define a thermal resummation procedure based on partial dressing (PD) for general BSM calculations of phase transitions beyond the high-temperature approximation. Additionally, we introduce the modified optimized partial dressing (OPD) procedure, which is numerically nearly as efficient as old incorrect methods, while yielding identical results to the full PD calculation. This can be easily applied to future BSM studies of phase transitions in the early universe. As an example, we show that in unmixed singlet scalar extensions of the SM, the (O)PD calculations make new phenomenological predictions compared to previous analyses. An important future application is the study of EFTs at finite temperature.