scispace - formally typeset
Search or ask a question

Showing papers on "Receptor published in 2000"


Journal ArticleDOI
TL;DR: It is demonstrated that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcγRIIB.
Abstract: Inhibitory receptors have been proposed to modulate the in vivo cytotoxic response against tumor targets for both spontaneous and antibody-dependent pathways. Using a variety of syngenic and xenograft models, we demonstrate here that the inhibitory FcgammaRIIB molecule is a potent regulator of antibody-dependent cell-mediated cytotoxicity in vivo, modulating the activity of FcgammaRIII on effector cells. Although many mechanisms have been proposed to account for the anti-tumor activities of therapeutic antibodies, including extended half-life, blockade of signaling pathways, activation of apoptosis and effector-cell-mediated cytotoxicity, we show here that engagement of Fcgamma receptors on effector cells is a dominant component of the in vivo activity of antibodies against tumors. Mouse monoclonal antibodies, as well as the humanized, clinically effective therapeutic agents trastuzumab (Herceptin(R)) and rituximab (Rituxan(R)), engaged both activation (FcgammaRIII) and inhibitory (FcgammaRIIB) antibody receptors on myeloid cells, thus modulating their cytotoxic potential. Mice deficient in FcgammaRIIB showed much more antibody-dependent cell-mediated cytotoxicity; in contrast, mice deficient in activating Fc receptors as well as antibodies engineered to disrupt Fc binding to those receptors were unable to arrest tumor growth in vivo. These results demonstrate that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcgammaRIIB.

2,831 citations


Journal ArticleDOI
TL;DR: In human tissues, normal homeostasis requires intricately balanced interactions between cells and the network of secreted proteins known as the extracellular matrix, which is clearly evident in the interactions mediated by the cytokine transforming growth factor β (TGF-β).
Abstract: In human tissues, normal homeostasis requires intricately balanced interactions between cells and the network of secreted proteins known as the extracellular matrix. These cooperative interactions involve numerous cytokines acting through specific cell-surface receptors. When the balance between the cells and the extracellular matrix is perturbed, disease can result. This is clearly evident in the interactions mediated by the cytokine transforming growth factor β (TGF-β). TGF-β is a member of a family of dimeric polypeptide growth factors that includes bone morphogenic proteins and activins. All of these growth factors share a cluster of conserved cysteine residues that form a common cysteine . . .

2,432 citations


Journal ArticleDOI
14 Sep 2000-Nature
TL;DR: Roles for PARs are beginning to emerge in haemostasis and thrombosis, inflammation, and perhaps even blood vessel development.
Abstract: How does the coagulation protease thrombin regulate cellular behaviour? The protease-activated receptors (PARs) provide one answer. In concert with the coagulation cascade, these receptors provide an elegant mechanism linking mechanical information in the form of tissue injury or vascular leakage to cellular responses. Roles for PARs are beginning to emerge in haemostasis and thrombosis, inflammation, and perhaps even blood vessel development.

2,354 citations


Journal Article
M. de Gasparo1, Kevin J. Catt, Tadashi Inagami, J. W. Wright, Th. Unger 
TL;DR: Although AT(1) receptors mediate most of the known actions of Ang II, the AT(2) receptor contributes to the regulation of blood pressure and renal function and the development of specific nonpeptide receptor antagonists has led to major advances in the physiology, pharmacology, and therapy of the renin-angiotensin system.
Abstract: The cardiovascular and other actions of angiotensin II (Ang II) are mediated by AT(1) and AT(2) receptors, which are seven transmembrane glycoproteins with 30% sequence similarity. Most species express a single autosomal AT(1) gene, but two related AT(1A) and AT(1B) receptor genes are expressed in rodents. AT(1) receptors are predominantly coupled to G(q/11), and signal through phospholipases A, C, D, inositol phosphates, calcium channels, and a variety of serine/threonine and tyrosine kinases. Many AT(1)-induced growth responses are mediated by transactivation of growth factor receptors. The receptor binding sites for agonist and nonpeptide antagonist ligands have been defined. The latter compounds are as effective as angiotensin converting enzyme inhibitors in cardiovascular diseases but are better tolerated. The AT(2) receptor is expressed at high density during fetal development. It is much less abundant in adult tissues and is up-regulated in pathological conditions. Its signaling pathways include serine and tyrosine phosphatases, phospholipase A(2), nitric oxide, and cyclic guanosine monophosphate. The AT(2) receptor counteracts several of the growth responses initiated by the AT(1) and growth factor receptors. The AT(4) receptor specifically binds Ang IV (Ang 3-8), and is located in brain and kidney. Its signaling mechanisms are unknown, but it influences local blood flow and is associated with cognitive processes and sensory and motor functions. Although AT(1) receptors mediate most of the known actions of Ang II, the AT(2) receptor contributes to the regulation of blood pressure and renal function. The development of specific nonpeptide receptor antagonists has led to major advances in the physiology, pharmacology, and therapy of the renin-angiotensin system.

2,063 citations


Journal ArticleDOI
22 Sep 2000-Science
TL;DR: Mice created with a neuron-specific disruption of the IR gene showed increased food intake, and both male and female mice developed diet-sensitive obesity with increases in body fat and plasma leptin levels, mild insulin resistance, elevated plasma insulin levels, and hypertriglyceridemia.
Abstract: Insulin receptors (IRs) and insulin signaling proteins are widely distributed throughout the central nervous system (CNS). To study the physiological role of insulin signaling in the brain, we created mice with a neuron-specific disruption of the IR gene (NIRKO mice). Inactivation of the IR had no impact on brain development or neuronal survival. However, female NIRKO mice showed increased food intake, and both male and female mice developed diet-sensitive obesity with increases in body fat and plasma leptin levels, mild insulin resistance, elevated plasma insulin levels, and hypertriglyceridemia. NIRKO mice also exhibited impaired spermatogenesis and ovarian follicle maturation because of hypothalamic dysregulation of luteinizing hormone. Thus, IR signaling in the CNS plays an important role in regulation of energy disposal, fuel metabolism, and reproduction.

1,932 citations


Journal ArticleDOI
TL;DR: A number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.

1,925 citations


Journal ArticleDOI
TL;DR: It is reported here that macrophages of C3H/HeJ mice, carrying a mutant Toll-like-receptor (Tlr) 4 are nonresponsive to hsp60, and this is the first report of a putative endogenous ligand of the Tlr4 complex.
Abstract: Human heat shock protein 60 (hsp60) elicits a potent proinflammatory response in cells of the innate immune system and therefore has been proposed as a danger signal of stressed or damaged cells We report here that macrophages of C3H/HeJ mice, carrying a mutant Toll-like-receptor (Tlr) 4 are nonresponsive to hsp60 Both the induction of TNF-alpha and NO formation were found dependent on a functional Tlr4 whereas stimulation of macrophages by CpG DNA was Tlr4 independent We conclude that Tlr4 mediates hsp60 signaling This is the first report of a putative endogenous ligand of the Tlr4 complex

1,697 citations


Journal ArticleDOI
TL;DR: A common receptor activation pathway can initiate innate immune responses to both bacterial and viral pathogens.
Abstract: The innate immune system contributes to the earliest phase of the host defense against foreign organisms and has both soluble and cellular pattern recognition receptors for microbial products. Two important members of this receptor group, CD14 and the Toll-like receptor (TLR) pattern recognition receptors, are essential for the innate immune response to components of Gram-negative and Gram-positive bacteria, mycobacteria, spirochetes and yeast. We now find that these receptors function in an antiviral response as well. The innate immune response to the fusion protein of an important respiratory pathogen of humans, respiratory syncytial virus (RSV), was mediated by TLR4 and CD14. RSV persisted longer in the lungs of infected TLR4-deficient mice compared to normal mice. Thus, a common receptor activation pathway can initiate innate immune responses to both bacterial and viral pathogens.

1,679 citations


Journal ArticleDOI
TL;DR: Low molecular weight radiopharmaceuticals based on folate conjugates showed much more favorable pharmacokinetic properties than radiolabeled antibodies and greater tumor selectivity in folate receptor-positive animal tumor models.

1,416 citations


Journal ArticleDOI
28 Sep 2000-Nature
TL;DR: It is shown that the ER isoform, ERα, binds in a ligand-dependent manner to the p85α regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K).
Abstract: Oestrogen produces diverse biological effects through binding to the oestrogen receptor (ER). The ER is a steroid hormone nuclear receptor, which, when bound to oestrogen, modulates the transcriptional activity of target genes. Controversy exists, however, concerning whether ER has a role outside the nucleus, particularly in mediating the cardiovascular protective effects of oestrogen. Here we show that the ER isoform, ER alpha, binds in a ligand-dependent manner to the p85alpha regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K). Stimulation with oestrogen increases ER alpha-associated PI(3)K activity, leading to the activation of protein kinase B/Akt and endothelial nitric oxide synthase (eNOS). Recruitment and activation of PI(3)K by ligand-bound ER alpha are independent of gene transcription, do not involve phosphotyrosine adapter molecules or src-homology domains of p85alpha, and extend to other steroid hormone receptors. Mice treated with oestrogen show increased eNOS activity and decreased vascular leukocyte accumulation after ischaemia and reperfusion injury. This vascular protective effect of oestrogen was abolished in the presence of PI(3)K or eNOS inhibitors. Our findings define a physiologically important non-nuclear oestrogen-signalling pathway involving the direct interaction of ER alpha with PI(3)K.

1,380 citations


Journal ArticleDOI
27 Dec 2000-Oncogene
TL;DR: The role of these active anti-receptor agents in the treatment of patients with cancer is addressed and compounds that directly inhibit receptor tyrosine kinases have shown preclinical activity and early clinical activity has been reported.
Abstract: Human carcinomas frequently express high levels of receptors in the EGF receptor family, and overexpression of at least two of these receptors, the EGF receptor (EGFr) and closely related ErbB2, has been associated with a more aggressive clinical behavior. Further, transfection or activation of high levels of these two receptors in nonmalignant cell lines can lead to a transformed phenotype. For these reasons therapies directed at preventing the function of these receptors have the potential to be useful anti-cancer treatments. In the last two decades monoclonal antibodies (MAbs) which block activation of the EGFr and ErbB2 have been developed. These MAbs have shown promising preclinical activity and 'chimeric' and 'humanized' MAbs have been produced in order to obviate the problem of host immune reactions. Clinical activity with these antibodies has been documented: trastuzumab, a humanized anti-ErbB2 MAb, is active and was recently approved in combination with paclitaxel for the therapy of patients with metastatic ErbB2-overexpressing breast cancer; IMC-C225, a chimeric anti-EGFr MAb, has shown impressive activity when combined with radiation therapy and reverses resistance to chemotherapy. In addition to antibodies, compounds that directly inhibit receptor tyrosine kinases have shown preclinical activity and early clinical activity has been reported. A series of phase III studies with these antibodies and direct tyrosine kinase inhibitors are ongoing or planned, and will further address the role of these active anti-receptor agents in the treatment of patients with cancer.

Journal ArticleDOI
TL;DR: Smad7 is defined as an adaptor in an E3 ubiquitin-ligase complex that targets the TGF beta receptor for degradation, and mutants that interfere with recruitment of Smurf2 to the receptors are compromised in their inhibitory activity.

Journal ArticleDOI
06 Oct 2000-Science
TL;DR: A central paradigm has emerged in which the pairing of activation and inhibition is necessary to initiate, amplify, and then terminate immune responses in mice with targeted disruption of inhibitory receptors.
Abstract: With the detailed description and analysis of several inhibitory receptor systems on lymphoid and myeloid cells, a central paradigm has emerged in which the pairing of activation and inhibition is necessary to initiate, amplify, and then terminate immune responses. In some cases, the activating and inhibitory receptors recognize similar ligands, and the net outcome is determined by the relative strength of these opposing signals. The importance of this modulation is demonstrated by the sometimes fatal autoimmune disorders observed in mice with targeted disruption of inhibitory receptors. The significance of these receptors is further evidenced by the conservation of immunoreceptor tyrosine-based inhibitory motifs during their evolution.

Journal ArticleDOI
TL;DR: The goal of the present review is to specifically address the physical changes linking agonist binding to receptor activation and subsequent transduction of the signal to the associated G protein on the cytoplasmic side of the membrane and to other putative signaling pathways.
Abstract: G protein-coupled, seven-transmembrane segment receptors (GPCRs or 7TM receptors), with more than 1000 different members, comprise the largest superfamily of proteins in the body. Since the cloning of the first receptors more than a decade ago, extensive experimental work has uncovered multiple aspects of their function and challenged many traditional paradigms. However, it is only recently that we are beginning to gain insight into some of the most fundamental questions in the molecular function of this class of receptors. How can, for example, so many chemically diverse hormones, neurotransmitters, and other signaling molecules activate receptors believed to share a similar overall tertiary structure? What is the nature of the physical changes linking agonist binding to receptor activation and subsequent transduction of the signal to the associated G protein on the cytoplasmic side of the membrane and to other putative signaling pathways? The goal of the present review is to specifically address these questions as well as to depict the current awareness about GPCR structure-function relationships in general. (Endocrine Reviews 21: 90 ‐113, 2000)

Journal ArticleDOI
TL;DR: Proteomic characterization with mass spectrometry and immunoblotting of NMDAR multiprotein complexes (NRC) isolated from mouse brain indicates the NRC also participates in human cognition.
Abstract: N-methyl-d-aspartate receptors (NMDAR) mediate long-lasting changes in synapse strength via downstream signaling pathways. We report proteomic characterization with mass spectrometry and immunoblotting of NMDAR multiprotein complexes (NRC) isolated from mouse brain. The NRC comprised 77 proteins organized into receptor, adaptor, signaling, cytoskeletal and novel proteins, of which 30 are implicated from binding studies and another 19 participate in NMDAR signaling. NMDAR and metabotropic glutamate receptor subtypes were linked to cadherins and L1 cell-adhesion molecules in complexes lacking AMPA receptors. These neurotransmitter-adhesion receptor complexes were bound to kinases, phosphatases, GTPase-activating proteins and Ras with effectors including MAPK pathway components. Several proteins were encoded by activity-dependent genes. Genetic or pharmacological interference with 15 NRC proteins impairs learning and with 22 proteins alters synaptic plasticity in rodents. Mutations in three human genes (NF1, Rsk-2, L1) are associated with learning impairments, indicating the NRC also participates in human cognition.

Journal ArticleDOI
TL;DR: The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors for fatty acids (FAs) that regulate glucose and lipid homeostasis as mentioned in this paper.

Journal Article
TL;DR: The current knowledge concerning the multiple actions of PACAP in the central nervous system and in various peripheral organs including the endocrine glands, the airways, and the cardiovascular and immune systems are reviewed, as well as the different effects ofPACAP on a number of tumor cell types.
Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid peptide that was first isolated from ovine hypothalamic extracts on the basis of its ability to stimulate cAMP formation in anterior pituitary cells. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-glucagon-growth hormone releasing factor-secretin superfamily. The sequence of PACAP has been remarkably well conserved during the evolution from protochordate to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, and respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide whose activity remains unknown. Two types of PACAP binding sites have been characterized. Type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes, the PACAP-specific PAC1 receptor, which is coupled to several transduction systems, and the two PACAP/VIP-indifferent VPAC1 and VPAC2 receptors, which are primarily coupled to adenylyl cyclase. PAC1 receptors are particularly abundant in the brain and pituitary and adrenal glands whereas VPAC receptors are expressed mainly in the lung, liver, and testis. The wide distribution of PACAP and PACAP receptors has led to an explosion of studies aimed at determining the pharmacological effects and biological functions of the peptide. This report reviews the current knowledge concerning the multiple actions of PACAP in the central nervous system and in various peripheral organs including the endocrine glands, the airways, and the cardiovascular and immune systems, as well as the different effects of PACAP on a number of tumor cell types.

Journal ArticleDOI
TL;DR: It is suggested that VEGF receptor signaling is required for maintenance of theAlveolar structures and, further, that alveolar septal cell apoptosis contributes to the pathogenesis of emphysema.
Abstract: Pulmonary emphysema, a significant global health problem, is characterized by a loss of alveolar structures. Because VEGF is a trophic factor required for the survival of endothelial cells and is abundantly expressed in the lung, we hypothesized that chronic blockade of VEGF receptors could induce alveolar cell apoptosis and emphysema. Chronic treatment of rats with the VEGF receptor blocker SU5416 led to enlargement of the air spaces, indicative of emphysema. The VEGF receptor inhibitor SU5416 induced alveolar septal cell apoptosis but did not inhibit lung cell proliferation. Viewed by angiography, SU5416-treated rat lungs showed a pruning of the pulmonary arterial tree, although we observed no lung infiltration by inflammatory cells or fibrosis. SU5416 treatment led to a decrease in lung expression of VEGF receptor 2 (VEGFR-2), phosphorylated VEGFR-2, and Akt-1 in the complex with VEGFR-2. Treatment with the caspase inhibitor Z-Asp-CH2-DCB prevented SU5416-induced septal cell apoptosis and emphysema development. These findings suggest that VEGF receptor signaling is required for maintenance of the alveolar structures and, further, that alveolar septal cell apoptosis contributes to the pathogenesis of emphysema.

Journal ArticleDOI
21 Dec 2000-Nature
TL;DR: Stargazer, an ataxic and epileptic mutant mouse, lacks functional AMPA receptors on cerebellar granule cells, and expression of a mutant stargazin lacking the PDZ-binding domain in hippocampal pyramidal cells disrupts synaptic AMPA receptor receptors, indicating that st argazin-like mechanisms for targeting AM PA receptors may be widespread in the central nervous system.
Abstract: Stargazer, an ataxic and epileptic mutant mouse, lacks functional AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate) receptors on cerebellar granule cells. Stargazin, the mutated protein, interacts with both AMPA receptor subunits and synaptic PDZ proteins, such as PSD-95. The interaction of stargazin with AMPA receptor subunits is essential for delivering functional receptors to the surface membrane of granule cells, whereas its binding with PSD-95 and related PDZ proteins through a carboxy-terminal PDZ-binding domain is required for targeting the AMPA receptor to synapses. Expression of a mutant stargazin lacking the PDZ-binding domain in hippocampal pyramidal cells disrupts synaptic AMPA receptors, indicating that stargazin-like mechanisms for targeting AMPA receptors may be widespread in the central nervous system.

Journal ArticleDOI
TL;DR: TREM-1 mediates activation of neutrophil and monocytes, and may have a predominant role in inflammatory responses.
Abstract: We have identified new activating receptors of the Ig superfamily expressed on human myeloid cells, called TREM (triggering receptor expressed on myeloid cells). TREM-1 is selectively expressed on blood neutrophils and a subset of monocytes and is up-regulated by bacterial LPS. Engagement of TREM-1 triggers secretion of IL-8, monocyte chemotactic protein-1, and TNF-alpha and induces neutrophil degranulation. Intracellularly, TREM-1 induces Ca2+ mobilization and tyrosine phosphorylation of extracellular signal-related kinase 1 (ERK1), ERK2 and phospholipase C-gamma. To mediate activation, TREM-1 associates with the transmembrane adapter molecule DAP12. Thus, TREM-1 mediates activation of neutrophil and monocytes, and may have a predominant role in inflammatory responses.

Journal ArticleDOI
TL;DR: To investigate the role of TLR family in host defense against Gram-positive bacteria, mice infected with Staphylococcus aureus were infected with TLR2- and MyD88-deficient mice, indicating that S. a Aureus is recognized not only byTLR2, but also by other TLRfamily members except for TLR4.
Abstract: Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns. We previously showed that TLR2 recognizes Gram-positive bacterial components whereas TLR4 recognizes LPS, a component of Gram-negative bacteria. MyD88 is shown to be an adaptor molecule essential for TLR family signaling. To investigate the role of TLR family in host defense against Gram-positive bacteria, we infected TLR2- and MyD88-deficient mice with Staphylococcus aureus. Both TLR2- and MyD88-deficient mice were highly susceptible to S. aureus infection, with more enhanced susceptibility in MyD88-deficient mice. Peritoneal macrophages from MyD88-deficient mice did not produce any detectable levels of cytokines in response to S. aureus. In contrast, TLR2-deficient macrophages produced reduced, but significant, levels of the cytokines, and TLR4-deficient macrophages produced the same amounts as wild-type cells, indicating that S. aureus is recognized not only by TLR2, but also by other TLR family members except for TLR4.

Journal ArticleDOI
TL;DR: It is shown that several products of lipoxygenases directly activate the capsaicin-activated channel in isolated membrane patches of sensory neurons, suggesting a novel signaling mechanism underlying the pain sensory transduction.
Abstract: Capsaicin, a pungent ingredient of hot peppers, causes excitation of small sensory neurons, and thereby produces severe pain. A nonselective cation channel activated by capsaicin has been identified in sensory neurons and a cDNA encoding the channel has been cloned recently. However, an endogenous activator of the receptor has not yet been found. In this study, we show that several products of lipoxygenases directly activate the capsaicin-activated channel in isolated membrane patches of sensory neurons. Among them, 12- and 15-(S)-hydroperoxyeicosatetraenoic acids, 5- and 15-(S)-hydroxyeicosatetraenoic acids, and leukotriene B4 possessed the highest potency. The eicosanoids also activated the cloned capsaicin receptor (VR1) expressed in HEK cells. Prostaglandins and unsaturated fatty acids failed to activate the channel. These results suggest a novel signaling mechanism underlying the pain sensory transduction.

Journal ArticleDOI
TL;DR: Results support a major role for CD36 in atherosclerotic lesion development in vivo and suggest that blockade of CD36 can be protective even in more extreme proatherogenic circumstances.
Abstract: Macrophage scavenger receptors have been implicated as key players in the pathogenesis of atherosclerosis. To assess the role of the class B scavenger receptor CD36 in atherogenesis, we crossed a CD36-null strain with the atherogenic apo E–null strain and quantified lesion development. There was a 76.5% decrease in aortic tree lesion area (Western diet) and a 45% decrease in aortic sinus lesion area (normal chow) in the CD36-apo E double-null mice when compared with controls, despite alterations in lipoprotein profiles that often correlate with increased atherogenicity. Macrophages derived from CD36-apo E double-null mice bound and internalized more than 60% less copper-oxidized LDL and LDL modified by monocyte-generated reactive nitrogen species. A similar inhibition of in vitro lipid accumulation and foam cell formation after exposure to these ligands was seen. These results support a major role for CD36 in atherosclerotic lesion development in vivo and suggest that blockade of CD36 can be protective even in more extreme proatherogenic circumstances.

Journal ArticleDOI
TL;DR: The results show sterol-dependent transactivation of the ABC1 promoter by LXR/RXR and suggest that small molecule agonists of LXR could be useful drugs to reverse foam cell formation and atherogenesis.

Journal ArticleDOI
01 Feb 2000-Immunity
TL;DR: It is shown that T cell homeostasis requires T GFβ signaling in T cells, and a transgenic approach to abrogate the TGFβ response in key immune cells is developed.

Journal ArticleDOI
06 Oct 2000-Science
TL;DR: The findings indicate that the anxiolytic effect of benzodiazepine drugs is mediated by alpha2 GABAA receptors, which are largely expressed in the limbic system, but not by alpha3 GAB AA receptors,Which predominate in the reticular activating system.
Abstract: Benzodiazepine tranquilizers are used in the treatment of anxiety disorders. To identify the molecular and neuronal target mediating the anxiolytic action of benzodiazepines, we generated and analyzed two mouse lines in which the alpha2 or alpha3 GABAA (gamma-aminobutyric acid type A) receptors, respectively, were rendered insensitive to diazepam by a knock-in point mutation. The anxiolytic action of diazepam was absent in mice with the alpha2(H101R) point mutation but present in mice with the alpha3(H126R) point mutation. These findings indicate that the anxiolytic effect of benzodiazepine drugs is mediated by alpha2 GABAA receptors, which are largely expressed in the limbic system, but not by alpha3 GABAA receptors, which predominate in the reticular activating system.

Journal ArticleDOI
TL;DR: It is found that a large proportion of primary spinal afferent neurons also contain the proinflammatory neuropeptides calcitonin gene-related peptide and substance P, which mediate inflammatory edema induced by agonists of proteinase-activated receptor 2.
Abstract: Trypsin and mast cell tryptase cleave proteinase-activated receptor 2 and, by unknown mechanisms, induce widespread inflammation. We found that a large proportion of primary spinal afferent neurons, which express proteinase-activated receptor 2, also contain the proinflammatory neuropeptides calcitonin gene-related peptide and substance P. Trypsin and tryptase directly signal to neurons to stimulate release of these neuropeptides, which mediate inflammatory edema induced by agonists of proteinase-activated receptor 2. This new mechanism of protease-induced neurogenic inflammation may contribute to the proinflammatory effects of mast cells in human disease. Thus, tryptase inhibitors and antagonists of proteinase-activated receptor 2 may be useful anti-inflammatory agents.

Journal ArticleDOI
TL;DR: Single-molecule tracking reveals that the predominant mechanism of dimerization involves the formation of a cell-surface complex of one EGF molecules and an EGFR dimer, followed by the direct arrest of a second EGF molecule, indicating that the EG FR dimers were probably preformed before the binding of the second E GF molecule.
Abstract: The early events in signal transduction from the epidermal growth factor (EGF) receptor (EGFR) are dimerization and autophosphorylation of the receptor, induced by binding of EGF. Here we observe these events in living cells by visualizing single molecules of fluorescent-dye-labelled EGF in the plasma membrane of A431 carcinoma cells. Single-molecule tracking reveals that the predominant mechanism of dimerization involves the formation of a cell-surface complex of one EGF molecule and an EGFR dimer, followed by the direct arrest of a second EGF molecule, indicating that the EGFR dimers were probably preformed before the binding of the second EGF molecule. Single-molecule fluorescence-resonance energy transfer shows that EGF-EGFR complexes indeed form dimers at the molecular level. Use of a monoclonal antibody specific to the phosphorylated (activated) EGFR reveals that the EGFR becomes phosphorylated after dimerization.

Journal ArticleDOI
30 Jun 2000-Science
TL;DR: A conserved domain in the extracellular region of the 60- and 80-kilodalton tumor necrosis factor receptors was identified that mediates specific ligand-independent assembly of receptor trimers.
Abstract: A conserved domain in the extracellular region of the 60- and 80-kilodalton tumor necrosis factor receptors (TNFRs) was identified that mediates specific ligand-independent assembly of receptor trimers This pre-ligand-binding assembly domain (PLAD) is physically distinct from the domain that forms the major contacts with ligand, but is necessary and sufficient for the assembly of TNFR complexes that bind TNF-alpha and mediate signaling Other members of the TNFR superfamily, including TRAIL receptor 1 and CD40, show similar homotypic association Thus, TNFRs and related receptors appear to function as preformed complexes rather than as individual receptor subunits that oligomerize after ligand binding

Journal ArticleDOI
TL;DR: It is demonstrated that MC4-R mutations are a frequent but heterogeneous genetic cause of morbid obesity and transmission in the families of the carriers indicates a variable expressivity that is not related to the functional severity of the mutations.
Abstract: By integrating an agonist satiety signal, provided by alpha–melanocyte-stimulating hormone (α-MSH), and an antagonist signal, provided by agouti-related protein (AGRP), the melanocortin-4 receptor (MC4-R) is a key element in the hypothalamic control of food intake. Inactivation of the gene encoding this G protein–coupled receptor causes obesity in mice. In humans, frameshift mutations in MC4-R cause an early-onset dominant form of obesity in two families. In this study we find a high frequency (4%) of rare heterozygous MC4-R mutations in a large population of morbidly obese patients. No such mutations were found in controls. By analyzing the phenotypes of the probands carrying these mutations, we demonstrate that these patients display a common, nonsyndromic form of obesity. Interestingly, functional analysis of the mutant receptors indicates that obesity-associated defects in MC4-R range from loss of function to constitutive activation. Transmission of these mutations in the families of the carriers indicates a variable expressivity that is not related to the functional severity of the mutations. This variable expressivity of MC4-R–associated obesity is not due to variations in genes for α-MSH or AGRP. Taken together, these results demonstrate that MC4-R mutations are a frequent but heterogeneous genetic cause of morbid obesity.