scispace - formally typeset
Search or ask a question

Showing papers by "Garry P. Nolan published in 2021"


Journal ArticleDOI
TL;DR: In this paper, the SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces β cell apoptosis, each rescued by NRP1 inhibition.

179 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide optimized protocols for conjugating purified antibodies to DNA oligonucleotides, validating the conjugation by co-detection by indexing (CODEX), and executing the CODEX multicycle imaging procedure for both formalin-fixed, paraffin-embedded (FFPE) and fresh-frozen tissues.
Abstract: Advances in multiplexed imaging technologies have drastically improved our ability to characterize healthy and diseased tissues at the single-cell level. Co-detection by indexing (CODEX) relies on DNA-conjugated antibodies and the cyclic addition and removal of complementary fluorescently labeled DNA probes and has been used so far to simultaneously visualize up to 60 markers in situ. CODEX enables a deep view into the single-cell spatial relationships in tissues and is intended to spur discovery in developmental biology, disease and therapeutic design. Herein, we provide optimized protocols for conjugating purified antibodies to DNA oligonucleotides, validating the conjugation by CODEX staining and executing the CODEX multicycle imaging procedure for both formalin-fixed, paraffin-embedded (FFPE) and fresh-frozen tissues. In addition, we describe basic image processing and data analysis procedures. We apply this approach to an FFPE human tonsil multicycle experiment. The hands-on experimental time for antibody conjugation is ~4.5 h, validation of DNA-conjugated antibodies with CODEX staining takes ~6.5 h and preparation for a CODEX multicycle experiment takes ~8 h. The multicycle imaging and data analysis time depends on the tissue size, number of markers in the panel and computational complexity. This protocol describes co-detection by indexing, a highly multiplexed imaging technology that uses DNA-conjugated antibodies to image up to 60 markers in formalin-fixed, paraffin-embedded and fresh-frozen tissues.

117 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide essential resources, key considerations for obtaining robust and reproducible imaging data, and specialized knowledge from domain experts and technology developers for antibody-based highly multiplexed tissue imaging.
Abstract: Tissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells have been largely based on single-cell sequencing approaches, which lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient depth, several multiplexed protein imaging methods have been recently developed. Though these technologies differ in strategy and mode of immunolabeling and detection tags, they commonly utilize antibodies directed against protein biomarkers to provide detailed spatial and functional maps of complex tissues. As these promising antibody-based multiplexing approaches become more widely adopted, new frameworks and considerations are critical for training future users, generating molecular tools, validating antibody panels, and harmonizing datasets. In this Perspective, we provide essential resources, key considerations for obtaining robust and reproducible imaging data, and specialized knowledge from domain experts and technology developers. This Perspective offers guidance for robust and reproducible antibody-based highly multiplexed tissue imaging.

89 citations


Journal ArticleDOI
TL;DR: In this paper, a spatial biomarker that uses immune and cancer cell topography to predict response to PD-1 blockade in cutaneous T cell lymphomas (CTCL) is presented.
Abstract: Cutaneous T cell lymphomas (CTCL) are rare but aggressive cancers without effective treatments. While a subset of patients derive benefit from PD-1 blockade, there is a critically unmet need for predictive biomarkers of response. Herein, we perform CODEX multiplexed tissue imaging and RNA sequencing on 70 tumor regions from 14 advanced CTCL patients enrolled in a pembrolizumab clinical trial (NCT02243579). We find no differences in the frequencies of immune or tumor cells between responders and non-responders. Instead, we identify topographical differences between effector PD-1+ CD4+ T cells, tumor cells, and immunosuppressive Tregs, from which we derive a spatial biomarker, termed the SpatialScore, that correlates strongly with pembrolizumab response in CTCL. The SpatialScore coincides with differences in the functional immune state of the tumor microenvironment, T cell function, and tumor cell-specific chemokine recruitment and is validated using a simplified, clinically accessible tissue imaging platform. Collectively, these results provide a paradigm for investigating the spatial balance of effector and suppressive T cell activity and broadly leveraging this biomarker approach to inform the clinical use of immunotherapies. PD-1 blockade is effective for only a subset of patients with cutaneous T cell lymphomas. Here, the authors report a spatial biomarker that uses immune and cancer cell topography to predict response to PD-1 blockade in this disease.

54 citations


Journal ArticleDOI
20 Jul 2021
TL;DR: In this article, the authors provide a perspective on XR in current biomedical applications and demonstrate case studies using cell biology concepts, multiplexed proteomics images, surgical data for heart operations, and cardiac 3D models.
Abstract: 3D visualization technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR) have gained popularity in the recent decade. Digital extended reality (XR) technologies have been adopted in various domains ranging from entertainment to education because of their accessibility and affordability. XR modalities create an immersive experience, enabling 3D visualization of the content without a conventional 2D display constraint. Here, we provide a perspective on XR in current biomedical applications and demonstrate case studies using cell biology concepts, multiplexed proteomics images, surgical data for heart operations, and cardiac 3D models. Emerging challenges associated with XR technologies in the context of adverse health effects and a cost comparison of distinct platforms are discussed. The presented XR platforms will be useful for biomedical education, medical training, surgical guidance, and molecular data visualization to enhance trainees' and students' learning, medical operation accuracy, and the comprehensibility of complex biological systems.

50 citations


Journal ArticleDOI
TL;DR: Overcoming obstacles will require new strategies to improve upon the efficacy of current agents, identify biomarkers to select appropriate therapies, and discover new modalities to expand the accessibility of immunotherapy to additional tumor types and patient populations.
Abstract: Cancer immunotherapy has dramatically changed the approach to cancer treatment. The aim of targeting the immune system to recognize and destroy cancer cells has afforded many patients the prospect of achieving deep, long-term remission and potential cures. However, many challenges remain for achieving the goal of effective immunotherapy for all cancer patients. Checkpoint inhibitors have been able to achieve long-term responses in a minority of patients, yet improving response rates with combination therapies increases the possibility of toxicity. Chimeric antigen receptor T cells have demonstrated high response rates in hematological cancers, although most patients experience relapse. In addition, some cancers are notoriously immunologically "cold" and typically are not effective targets for immunotherapy. Overcoming these obstacles will require new strategies to improve upon the efficacy of current agents, identify biomarkers to select appropriate therapies, and discover new modalities to expand the accessibility of immunotherapy to additional tumor types and patient populations.

39 citations


Journal ArticleDOI
TL;DR: In this article, the authors report the design, development, optimization, and application of a 56-marker CODEX antibody panel to eight cutaneous T cell lymphoma (CTCL) patient samples.
Abstract: Immunotherapies are revolutionizing cancer treatment by boosting the natural ability of the immune system. In addition to antibodies against traditional checkpoint molecules or their ligands (i.e., CTLA-4, PD-1, and PD-L1), therapies targeting molecules such as ICOS, IDO-1, LAG-3, OX40, TIM-3, and VISTA are currently in clinical trials. To better inform clinical care and the design of therapeutic combination strategies, the co-expression of immunoregulatory proteins on individual immune cells within the tumor microenvironment must be robustly characterized. Highly multiplexed tissue imaging platforms, such as CO-Detection by indEXing (CODEX), are primed to meet this need by enabling >50 markers to be simultaneously analyzed in single-cells on formalin-fixed paraffin-embedded (FFPE) tissue sections. Assembly and validation of antibody panels is particularly challenging, with respect to the specificity of antigen detection and robustness of signal over background. Herein, we report the design, development, optimization, and application of a 56-marker CODEX antibody panel to eight cutaneous T cell lymphoma (CTCL) patient samples. This panel is comprised of structural, tumor, and immune cell markers, including eight immunoregulatory proteins that are approved or currently undergoing clinical trials as immunotherapy targets. Here we provide a resource to enable extensive high-dimensional, spatially resolved characterization of the tissue microenvironment across tumor types and imaging modalities. This framework provides researchers with a readily applicable blueprint to study tumor immunology, tissue architecture, and enable mechanistic insights into immunotherapeutic targets.

38 citations


Journal ArticleDOI
TL;DR: In this article, the authors simplified and simplified the multiple-xed imaging method CO-Detection by indEXing (CODEX) by validating 58 unique oligonucleotide barcodes that can be conjugated to antibodies.
Abstract: Multiparameter tissue imaging enables analysis of cell-cell interactions in situ, the cellular basis for tissue structure, and novel cell types that are spatially restricted, giving clues to biological mechanisms behind tissue homeostasis and disease Here, we streamlined and simplified the multiplexed imaging method CO-Detection by indEXing (CODEX) by validating 58 unique oligonucleotide barcodes that can be conjugated to antibodies We showed that barcoded antibodies retained their specificity for staining cognate targets in human tissue Antibodies were visualized one at a time by adding a fluorescently labeled oligonucleotide complementary to oligonucleotide barcode, imaging, stripping, and repeating this cycle With this we developed a panel of 46 antibodies that was used to stain five human lymphoid tissues: three tonsils, a spleen, and a LN To analyze the data produced, an image processing and analysis pipeline was developed that enabled single-cell analysis on the data, including unsupervised clustering, that revealed 31 cell types across all tissues We compared cell-type compositions within and directly surrounding follicles from the different lymphoid organs and evaluated cell-cell density correlations This sequential oligonucleotide exchange technique enables a facile imaging of tissues that leverages pre-existing imaging infrastructure to decrease the barriers to broad use of multiplexed imaging

34 citations


Journal ArticleDOI
TL;DR: In this article, the authors created single-cell multiplexed imaging datasets by performing CODEX on four sections of the human colon (ascending, transverse, descending, and sigmoid) using a panel of 47 oligonucleotide-barcoded antibodies.
Abstract: Multiplexed imaging is a recently developed and powerful single-cell biology research tool. However, it presents new sources of technical noise that are distinct from other types of single-cell data, necessitating new practices for single-cell multiplexed imaging processing and analysis, particularly regarding cell-type identification. Here we created single-cell multiplexed imaging datasets by performing CODEX on four sections of the human colon (ascending, transverse, descending, and sigmoid) using a panel of 47 oligonucleotide-barcoded antibodies. After cell segmentation, we implemented five different normalization techniques crossed with four unsupervised clustering algorithms, resulting in 20 unique cell-type annotations for the same dataset. We generated two standard annotations: hand-gated cell types and cell types produced by over-clustering with spatial verification. We then compared these annotations at four levels of cell-type granularity. First, increasing cell-type granularity led to decreased labeling accuracy; therefore, subtle phenotype annotations should be avoided at the clustering step. Second, accuracy in cell-type identification varied more with normalization choice than with clustering algorithm. Third, unsupervised clustering better accounted for segmentation noise during cell-type annotation than hand-gating. Fourth, Z-score normalization was generally effective in mitigating the effects of noise from single-cell multiplexed imaging. Variation in cell-type identification will lead to significant differential spatial results such as cellular neighborhood analysis; consequently, we also make recommendations for accurately assigning cell-type labels to CODEX multiplexed imaging.

31 citations


Posted Content
TL;DR: The Minimum Information about Highly Multiplexed Tissue Imaging (MITI) standard as discussed by the authors is based on best practices from genomics and microscopy of cultured cells and model organisms.
Abstract: The imminent release of atlases combining highly multiplexed tissue imaging with single cell sequencing and other omics data from human tissues and tumors creates an urgent need for data and metadata standards compliant with emerging and traditional approaches to histology. We describe the development of a Minimum Information about highly multiplexed Tissue Imaging (MITI) standard that draws on best practices from genomics and microscopy of cultured cells and model organisms.

23 citations


Journal ArticleDOI
TL;DR: In this article, high-definition multiplex ion beam imaging (HD-MIBI) was used to estimate the subcellular distribution of the chemotherapy drug cisplatin in cells.
Abstract: Simultaneous visualization of the relationship between multiple biomolecules and their ligands or small molecules at the nanometer scale in cells will enable greater understanding of how biological processes operate. We present here high-definition multiplex ion beam imaging (HD-MIBI), a secondary ion mass spectrometry approach capable of high-parameter imaging in 3D of targeted biological entities and exogenously added structurally-unmodified small molecules. With this technology, the atomic constituents of the biomolecules themselves can be used in our system as the “tag” and we demonstrate measurements down to ~30 nm lateral resolution. We correlated the subcellular localization of the chemotherapy drug cisplatin simultaneously with five subnuclear structures. Cisplatin was preferentially enriched in nuclear speckles and excluded from closed-chromatin regions, indicative of a role for cisplatin in active regions of chromatin. Unexpectedly, cells surviving multi-drug treatment with cisplatin and the BET inhibitor JQ1 demonstrated near total cisplatin exclusion from the nucleus, suggesting that selective subcellular drug relocalization may modulate resistance to this important chemotherapeutic treatment. Multiplexed high-resolution imaging techniques, such as HD-MIBI, will enable studies of biomolecules and drug distributions in biologically relevant subcellular microenvironments by visualizing the processes themselves in concert, rather than inferring mechanism through surrogate analyses. Multiplexed ion beam imaging can provide subcellular localisation information but with limited resolution. Here the authors report an ion beam imaging method with nanoscale resolution which they use to assess the subcellular distribution of cisplatin.

Journal ArticleDOI
TL;DR: In this article, a computational approach for constructing tissue schematics (TSs) from high-parameter imaging data and a biological model for interpreting them is presented, which maps the spatial assembly of cellular neighborhoods into tissue motifs, whose modular composition enables the generation of complex outputs.
Abstract: A schematic of a biological system, i.e., a representation of its pieces, how they are combined, and what they do, would facilitate understanding its essential organization and alteration in pathogenesis or evolution. We present a computational approach for constructing tissue schematics (TSs) from high-parameter imaging data and a biological model for interpreting them. TSs map the spatial assembly of cellular neighborhoods into tissue motifs, whose modular composition, we propose, enables the generation of complex outputs. We developed our approach in human lymphoid tissue (HLT), identifying the follicular outer zone as a potential relay between neighboring zones and a core lymphoid assembly with modifications characteristic of each HLT type. Applying the TS approach to the tumor microenvironment in human colorectal cancer identified a higher-order motif, whose mutated assembly was negatively associated with patient survival. TSs may therefore elucidate how immune architectures can be specialized and become vulnerable to reprogramming by tumors.

Posted ContentDOI
25 Oct 2021-bioRxiv
TL;DR: In this article, the authors demonstrate that human adipose tissue from multiple depots is permissive to SARS-CoV-2 infection and that infection elicits an inflammatory response, including the secretion of known inflammatory mediators of severe COVID-19.
Abstract: The COVID-19 pandemic, caused by the viral pathogen SARS-CoV-2, has taken the lives of millions of individuals around the world. Obesity is associated with adverse COVID-19 outcomes, but the underlying mechanism is unknown. In this report, we demonstrate that human adipose tissue from multiple depots is permissive to SARS-CoV-2 infection and that infection elicits an inflammatory response, including the secretion of known inflammatory mediators of severe COVID-19. We identify two cellular targets of SARS-CoV-2 infection in adipose tissue: mature adipocytes and adipose tissue macrophages. Adipose tissue macrophage infection is largely restricted to a highly inflammatory subpopulation of macrophages, present at baseline, that is further activated in response to SARS-CoV-2 infection. Preadipocytes, while not infected, adopt a proinflammatory phenotype. We further demonstrate that SARS-CoV-2 RNA is detectable in adipocytes in COVID-19 autopsy cases and is associated with an inflammatory infiltrate. Collectively, our findings indicate that adipose tissue supports SARS-CoV-2 infection and pathogenic inflammation and may explain the link between obesity and severe COVID-19.

Journal ArticleDOI
TL;DR: EpicTags was developed, which was coupled to multiplex ion beam imaging (EpicMIBI) for in situ tracking of barcodes within tissue microenvironments, and can facilitate in situ interrogation of cell-intrinsic and cell-extrinsics processes involved in intratumoral heterogeneity.
Abstract: Intratumoral variability is a seminal feature of human tumors contributing to tumor progression and response to treatment. Current technologies are unsuitable to accurately track phenotypes and subclonal evolution within tumors, especially in response to genetic manipulations. Here, we developed epitope combinatorial tags (EpicTags), which we coupled to multiplex ion beam imaging (EpicMIBI) for in situ tracking of barcodes within tissue microenvironments. Using this platform, we dissected the spatial components of cell lineages and phenotypes in a xenograft model of small-cell lung cancer. We observed emergent properties from mixed clones leading to the preferential expansion of subclonal patches for both neuroendocrine and non-neuroendocrine cancer cell states in this model. In tumors harboring a fraction of PTEN-deficient cancer cells, we uncovered a non-autonomous increase of subclonal patch size in PTEN wild-type cancer cells. EpicMIBI can facilitate in situ interrogation of cell-intrinsic and cell-extrinsic processes involved in intratumoral heterogeneity.

Journal ArticleDOI
TL;DR: In this article, reinforcement dynamic spillover elimination (REDSEA) was proposed to correct for lateral spillage of cell surface markers between adjacent cells, which improved the recovery of marker signals across both isotopic and immunofluorescent (i.e., Cyclic Immunofluorescence) multiplexed images resulting in a marked improvement in cell-type classification.
Abstract: Multiplex imaging technologies are now routinely capable of measuring more than 40 antibody-labeled parameters in single cells. However, lateral spillage of signals in densely packed tissues presents an obstacle to the assignment of high-dimensional spatial features to individual cells for accurate cell-type annotation. We devised a method to correct for lateral spillage of cell surface markers between adjacent cells termed REinforcement Dynamic Spillover EliminAtion (REDSEA). The use of REDSEA decreased contaminating signals from neighboring cells. It improved the recovery of marker signals across both isotopic (i.e., Multiplexed Ion Beam Imaging) and immunofluorescent (i.e., Cyclic Immunofluorescence) multiplexed images resulting in a marked improvement in cell-type classification.

Posted ContentDOI
25 Nov 2021-bioRxiv
TL;DR: In this article, a geometric deep learning method that utilizes spatial and molecular cell information to automatically assign cell types from an annotated reference set as well as discover new cell types and cell states is presented.
Abstract: Spatial protein and RNA imaging technologies have been gaining rapid attention but current computational methods for annotating cells are based on techniques established for dissociated single-cell technologies and thus do not take spatial organization into account. Here we present STELLAR, a geometric deep learning method that utilizes spatial and molecular cell information to automatically assign cell types from an annotated reference set as well as discover new cell types and cell states. STELLAR transfers annotations across different dissection regions, tissues, and donors and detects higher-order tissue structures with dramatic time savings.

Journal ArticleDOI
14 Jan 2021-PLOS ONE
TL;DR: In this article, the authors used a system immunology approach to simultaneously quantify 42 signaling nodes in 21 immune cell subsets (e.g., IFNα→p-STAT5 in B cells) in peripheral blood mononuclear cells (PBMC) from 194 patients with rheumatoid arthritis (RA) and 41 healthy controls (HC).
Abstract: Rheumatoid arthritis (RA) is a systemic and incurable autoimmune disease characterized by chronic inflammation in synovial lining of joints. To identify the signaling pathways involved in RA, its disease activity, and treatment response, we adapted a systems immunology approach to simultaneously quantify 42 signaling nodes in 21 immune cell subsets (e.g., IFNα→p-STAT5 in B cells) in peripheral blood mononuclear cells (PBMC) from 194 patients with longstanding RA (including 98 patients before and after treatment), and 41 healthy controls (HC). We found multiple differences between patients with RA compared to HC, predominantly in cytokine-induced Jak/STAT signaling in many immune cell subsets, suggesting pathways that may be associated with susceptibility to RA. We also found that high RA disease activity, compared to low disease activity, was associated with decreased (e.g., IFNα→p-STAT5, IL-10→p-STAT1) or increased (e.g., IL-6→STAT3) response to stimuli in multiple cell subsets. Finally, we compared signaling in patients with established, refractory RA before and six months after initiation of methotrexate (MTX) or TNF inhibitors (TNFi). We noted significant changes from pre-treatment to post-treatment in IFNα→p-STAT5 signaling and IL-10→p-STAT1 signaling in multiple cell subsets; these changes brought the aberrant RA signaling profiles toward those of HC. This large, comprehensive functional signaling pathway study provides novel insights into the pathogenesis of RA and shows the potential of quantification of cytokine-induced signaling as a biomarker of disease activity or treatment response.

Posted ContentDOI
25 Nov 2021-bioRxiv
TL;DR: In this paper, the authors performed CODEX multiplexed imaging, as well as single nuclear RNA and open chromatin assays across eight different intestinal sites of four donors, and found that the same cell types are organized into distinct neighborhoods and communities highlighting distinct immunological niches present in the intestine.
Abstract: The colon is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota, and affects overall health. To better understand its organization, functions, and its regulation at a single cell level, we performed CODEX multiplexed imaging, as well as single nuclear RNA and open chromatin assays across eight different intestinal sites of four donors. Through systematic analyses we find cell compositions differ dramatically across regions of the intestine, demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighborhoods and communities highlighting distinct immunological niches present in the intestine. We also map gene regulatory differences in these cells suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation, and organization for this organ, and serve as an important reference map for understanding human biology and disease.

Journal ArticleDOI
TL;DR: In this article, a phase-2 double-blind randomized placebo and active (inactivated influenza vaccine) controlled study provides evidence that a human-adenovirus-5-based oral influenza vaccine tablet (VXA-A1.1) can protect from H1N1 virus challenge in humans.

Posted ContentDOI
12 Feb 2021-bioRxiv
TL;DR: In this paper, the authors identify and independently validate a multivariate model classifying COVID-19 severity (multi-class AUCtraining = 0.799, p-value = 4.2e-6; multivariate AUCvalidation= 0.773, pvalue = 7.7e-7).
Abstract: The biological determinants of the wide spectrum of COVID-19 clinical manifestations are not fully understood. Here, over 1400 plasma proteins and 2600 single-cell immune features comprising cell phenotype, basal signaling activity, and signaling responses to inflammatory ligands were assessed in peripheral blood from patients with mild, moderate, and severe COVID-19, at the time of diagnosis. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identified and independently validated a multivariate model classifying COVID-19 severity (multi-class AUCtraining = 0.799, p-value = 4.2e-6; multi-class AUCvalidation = 0.773, p-value = 7.7e-6). Features of this high-dimensional model recapitulated recent COVID-19 related observations of immune perturbations, and revealed novel biological signatures of severity, including the mobilization of elements of the renin-angiotensin system and primary hemostasis, as well as dysregulation of JAK/STAT, MAPK/mTOR, and NF-κB immune signaling networks. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for the prevention of COVID-19 progression.

Journal ArticleDOI
TL;DR: In this paper, a mathematical and technical framework for three-dimensional (3D) subcellular MIBI is presented, and a parameter-free reconstruction method for ion beam tomograms with high accuracy is developed for low-density targets.
Abstract: Multiplexed ion beam imaging (MIBI) has been previously used to profile multiple parameters in two dimensions in single cells within tissue slices. Here, a mathematical and technical framework for three-dimensional (3D) subcellular MIBI is presented. Ion-beam tomography (IBT) compiles ion beam images that are acquired iteratively across successive, multiple scans, and later assembled into a 3D format without loss of depth resolution. Algorithmic deconvolution, tailored for ion beams, is then applied to the transformed ion image series, yielding 4-fold enhanced ion beam data cubes. To further generate 3D sub-ion-beam-width precision visuals, isolated ion molecules are localized in the raw ion beam images, creating an approach coined as SILM, secondary ion beam localization microscopy, providing sub-25 nm accuracy in original ion images. Using deep learning, a parameter-free reconstruction method for ion beam tomograms with high accuracy is developed for low-density targets. In cultured cancer cells and tissues, IBT enables accessible visualization of 3D volumetric distributions of genomic regions, RNA transcripts, and protein factors with 5 nm axial resolution using isotope-enrichments and label-free elemental analyses. Multiparameter imaging of subcellular features at near macromolecular resolution is implemented by the IBT tools as a general biocomputation pipeline for imaging mass spectrometry. Secondary ion beam mass spectrometry (SIMS) is a method to obtain a chemical snapshot of biological tissue, but the spatial resolution is low. Here, the authors develop a computational and technology pipeline to localise a chemical signal in SIMS in 3D and sub-25 nm accuracy, called Ion Beam Tomography

Posted Content
TL;DR: In this article, the authors discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise, and offer potential futures for a next generation of disruptive approaches to define, quantify and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease.
Abstract: All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide provocative projections for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we offer potential futures for a next generation of disruptive approaches to define, quantify and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.

Journal ArticleDOI
28 Sep 2021
TL;DR: In this article, the authors show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa.
Abstract: Understanding viral tropism is an essential step towards reducing SARS-CoV-2 transmission, decreasing mortality from COVID-19, and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head & neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in the expression of ACE2 and TMPRSS2, essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head & neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in IFN-β1 levels between smokers and non-smokers.

Posted ContentDOI
30 Jun 2021-bioRxiv
TL;DR: In this article, the spatial component of cell lineages and phenotypes in a xenograft model of small-cell lung cancer was dissected using epitope combinatorial tags and coupled with multiplexed ion beam imaging (EpicMIBI) to track barcodes within tissue microenvironments.
Abstract: Intratumoral variability is a seminal feature of human tumors contributing to tumor progression and response to treatment. Current technologies are unsuitable to accurately track phenotypes and subclonal evolution within tumors, especially in response to genetic manipulations. Here, we developed epitope combinatorial tags (EpicTags), which we coupled to multiplexed ion beam imaging (EpicMIBI) for in situ tracking of barcodes within tissue microenvironments. Using this platform, we dissected the spatial component of cell lineages and phenotypes in a xenograft model of small-cell lung cancer. We observed emergent properties from mixed clones leading to the preferential expansion of subclonal patches for both neuroendocrine and non-neuroendocrine cancer cell states in this model. In tumors harboring a fraction of PTEN-deficient cancer cells, we uncovered a non-autonomous increase of subclonal patch size in PTEN wildtype cancer cells. EpicMIBI can facilitate in situ interrogation of cell-intrinsic and cell-extrinsic processes involved in intratumoral heterogeneity.

Posted ContentDOI
04 Feb 2021
TL;DR: The value of a spatial tissue atlas as a precision medicine tool to guide treatment of patients suffering from autoimmune diseases is demonstrated and a computer vision model, with no a priori assumptions regarding cellular architectural features, was able to predict TNF inhibitor resistance.
Abstract: Ulcerative colitis is a chronic-relapsing inflammatory disease of the large intestine with a complex, multifactorial pathogenesis. TNF inhibitors are widely used to suppress immune-mediated tissue damage in ulcerative colitis patients; however, therapy failures are common. Predicting TNF inhibitor response requires an understanding of the architectural features that underlie mucosal inflammation and those responsible for resistance. Here, we used highly multiplexed immunofluorescence to uncover the spatially resolved tissue architectures underlying disease progression and treatment response in 42 tissue regions from 34 individuals. We created a tissue atlas and performed spatial analysis to identify cell-cell contacts and cellular neighborhoods. We observed that cellular functional states depend on cellular neighborhood and that a subset of inflammatory cell types and cellular neighborhoods in ulcerative colitis patients persisted even during treatment with TNF inhibitor, indicating resistant niches. A computer vision model, with no a priori assumptions regarding cellular architectural features, was able to predict TNF inhibitor resistance. This spatial model significantly outperformed classification models based on single-cell data alone. Our results demonstrate the value of a spatial tissue atlas as a precision medicine tool to guide treatment of patients suffering from autoimmune diseases.

Journal ArticleDOI
TL;DR: The PANINI-MIBI approach was used to measure over 30 parameters simultaneously across large sections of archival lymphoid tissues from non-human primates that were healthy or infected with simian immunodeficiency virus (SIV), a model that accurately recapitulates human immunodficiency virus infection (HIV).
Abstract: A thorough understanding of complex spatial host-disease interactions in situ is necessary in order to develop effective preventative measures and therapeutic strategies. Here, we developed Protein And Nucleic acid IN situ Imaging (PANINI) and coupled it with Multiplexed Ion Beam Imaging (MIBI) to sensitively and simultaneously quantify DNA, RNA, and protein levels within the microenvironments of tissue compartments. The PANINI-MIBI approach was used to measure over 30 parameters simultaneously across large sections of archival lymphoid tissues from non-human primates that were healthy or infected with simian immunodeficiency virus (SIV), a model that accurately recapitulates human immunodeficiency virus infection (HIV). This enabled multiplexed dissection of cellular phenotypes, functional markers, viral DNA integration events, and viral RNA transcripts as resulting from viral infection. The results demonstrated immune coordination from an unexpected upregulation of IL10 in B cells in response to SIV infection that correlated with macrophage M2 polarization, thus conditioning a potential immunosuppressive environment that allows for viral production. This multiplexed imaging strategy also allowed characterization of the coordinated microenvironment around latently or actively infected cells to provide mechanistic insights into the process of viral latency. The spatial multi-modal framework presented here is applicable to deciphering tissue responses in other infectious diseases and tumor biology.

Journal ArticleDOI
TL;DR: In this paper, the first report of relative performance between two products marketed to streamline detection of influenza virus in the context of a highly controlled volunteer influenza challenge study was provided, where Nasopharyngeal swab samples were collected during a controlled A/California/2009/H1N1 influenza challenge and analyzed for detection of virus shedding using a validated qRT-PCR (qPCR) assay, a sample-to-answer qRTPCR device (BioMerieux BioFire FilmArray RP), and an immunoassay based rapid test kit
Abstract: Influenza places a significant burden on global health and economics. Individual case management and public health efforts to mitigate the spread of influenza are both strongly impacted by our ability to accurately and efficiently detect influenza viruses in clinical samples. Therefore, it is important to understand the performance characteristics of available assays to detect influenza in a variety of settings. We provide the first report of relative performance between two products marketed to streamline detection of influenza virus in the context of a highly controlled volunteer influenza challenge study. Nasopharyngeal swab samples were collected during a controlled A/California/2009/H1N1 influenza challenge study and analyzed for detection of virus shedding using a validated qRT-PCR (qPCR) assay, a sample-to-answer qRT-PCR device (BioMerieux BioFire FilmArray RP), and an immunoassay based rapid test kit (Quidel QuickVue Influenza A + B Test). Relative to qPCR, the sensitivity and specificity of the BioFire assay was 72.1% [63.7–79.5%, 95% confidence interval (CI)] and 93.5% (89.3–96.4%, 95% CI) respectively. For the QuickVue rapid test the sensitivity was 8.5% (4.8–13.7%, 95% CI) and specificity was 99.2% (95.6–100%, 95% CI). Relative to qPCR, the BioFire assay had superior performance compared to rapid test in the context of a controlled influenza challenge study.

Posted ContentDOI
23 May 2021-bioRxiv
TL;DR: PANINI-MIBI was used to measure over 30 parameters simultaneously across large sections of archival lymphoid tissues from non-human primates that were healthy or infected with simian immunodeficiency virus (SIV).
Abstract: A thorough understanding of complex spatial host-disease interactions in situ is necessary in order to develop effective preventative measures and therapeutic strategies. Here, we developed Protein And Nucleic acid IN situ Imaging (PANINI) and coupled it with Multiplexed Ion Beam Imaging (MIBI) to sensitively and simultaneously quantify DNA, RNA, and protein levels within the microenvironments of tissue compartments. The PANINI-MIBI approach was used to measure over 30 parameters simultaneously across large sections of archival lymphoid tissues from non-human primates that were healthy or infected with simian immunodeficiency virus (SIV), a model that accurately recapitulates human immunodeficiency virus infection (HIV). This enabled multiplexed dissection of cellular phenotypes, functional markers, viral DNA integration events, and viral RNA transcripts as resulting from viral infection. The results demonstrated immune coordination from an unexpected upregulation of IL10 in B cells in response to SIV infection that correlated with macrophage M2 polarization, thus conditioning a potential immunosuppressive environment that allows for viral production. This multiplexed imaging strategy also allowed characterization of the coordinated microenvironment around latently or actively infected cells to provide mechanistic insights into the process of viral latency. The spatial multi-modal framework presented here is applicable to deciphering tissue responses in other infectious diseases and tumor biology.

Posted Content
TL;DR: In this article, the authors provide essential resources and key considerations for obtaining robust and reproducible multiplexed antibody-based imaging data compiling specialized knowledge from domain experts and technology developers.
Abstract: Tissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells are largely based on transcriptomic single-cell approaches that lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient coverage depth, several multiplexed protein imaging methods have recently been developed. Though these antibody-based technologies differ in strategy and mode of immunolabeling and detection tags, they commonly utilize antibodies directed against protein biomarkers to provide detailed spatial and functional maps of complex tissues. As these promising antibody-based multiplexing approaches become more widely adopted, new frameworks and considerations are critical for training future users, generating molecular tools, validating antibody panels, and harmonizing datasets. In this perspective, we provide essential resources and key considerations for obtaining robust and reproducible multiplexed antibody-based imaging data compiling specialized knowledge from domain experts and technology developers.

Journal ArticleDOI
TL;DR: In this article, a multiscale agent-based model including critical circuits from the T cell-tumor microenvironment interactions was proposed to investigate the relationship between phenotype characterization and control of ex vivo expanded cells; however, little is known about its relationship to changes in the tumor microenvironment in vivo.
Abstract: Background Immune cell therapies continue to have success in treatment of cancers yet face challenges of complexity, cost, toxicity, and low solid-tumor efficacy. Much work has focused on the phenotype characterization and control of ex vivo expanded cells; however, little is known about its relationship to changes in the tumor microenvironment in vivo. Thus, we imaged tumors treated with different phenotype tumor-specific CD8+ T cells with CODEX multiplexed imaging1–4 that is able to visualize 42 antibodies at the same tissue in the tissue (figure 1A). To further probe this data in a systems immunology approach we created a multiscale agent-based model including critical circuits from the T cell-tumor microenvironment interactions (figure 1B). Methods We initialized our agent-based models various percentages of either PD1+, PD1-, PDL1+, or PDL1- phenotypes and ran simulations for 72 hours. We also treated PMEL CD8+ T cells with or without 2 hydroxycitrate as a metabolic inhibitor during activation to achieve different input phenotypes of CD8+ T cells for therapeutic adoptive transfer on day 10 following B16-F10 tumors had been established. We performed neighborhood analysis on CODEX multiplexed imaging data by clustering neighboring cell types using a sliding window for neighborhood analysis. Results Interestingly, the agent-based modeling indicated that the tumor phenotype switch to decrease proliferation was more effective than direct T cell killing. We observed spatially restricted inflammatory immune fronts when simulating with different initial percentages of PD1+ T cells and also from our CODEX multiplexed imaging. Quantitatively we observe that there is a drastic increase in the PDL1+, MHCI+, Ki67- tumor phenotype that increases with metabolically inhibited T cells. Neighborhood analysis indicated that metabolically treated T cells were able to create distinct immune cell environments that supported productive T cell-tumor interactions and also helped maintain T cell phenotype. Conclusions This indicates there is a balance for therapeutic T cell to mitigate chronic tumor exposure while controlling tumor growth through killing and by changing tumor phenotype. We observe T cells create distinct tumor microenvironments that differs significantly based on the starting T cell phenotype. Controlling T cell phenotype to promote productive immune-tumor structures will be critical to maintain T cell functionality and efficacy. In the future we will investigate T cell recruitment of immune structures by similar systems biology technologies. Acknowledgements J.W.H. is funded by an ACS Postdoctoral Fellowship (PF-20-032-01-CSM). References Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, Black S and Nolan GP, Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell, 174(4):968–981. Schurch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, Chu P, Black S, Demeter J, McIlwain DR and Samusik N. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182(5):1341–1359. Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG, Samusik N, Goltsev Y, Schurch CM. and Nolan GP. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nature Protocols 1–36. Kennedy-Darling J, Bhate SS, Hickey JW, Black S, Barlow GL, Vazquez G, Venkataraaman VG, Samusik N, Goltsev Y, Schurch CM and Nolan GP. Highly multiplexed tissue imaging using repeated oligonucleotide exchange reaction. European Journal of Immunology 51(5):1262–1277. Ethics Approval All studies involving mice were approved under Stanford’s APLAC protocol 33502.