scispace - formally typeset
Search or ask a question

Showing papers by "Michael R. Stratton published in 2010"


Journal ArticleDOI
Thomas J. Hudson1, Thomas J. Hudson2, Warwick Anderson3, Axel Aretz4  +270 moreInstitutions (92)
15 Apr 2010
TL;DR: Systematic studies of more than 25,000 cancer genomes will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Abstract: The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.

2,041 citations


Journal ArticleDOI
14 Jan 2010-Nature
TL;DR: The genomes of a malignant melanoma and a lymphoblastoid cell line from the same person are sequenced, providing the first comprehensive catalogue of somatic mutations from an individual cancer.
Abstract: All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.

1,651 citations


Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: It is found that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2–M checkpoint, and phylogenetic trees across metastases show organ-specific branches.
Abstract: Christine Iacobuzio-Donahue and colleagues use whole-genome exome sequencing to analyse primary pancreatic cancers and one or more metastases from the same patients, and find that tumours are composed of distinct subclones. The authors also determine the evolutionary maps by which metastatic cancer clones have evolved within the primary tumour, and estimate the timescales of tumour progression. On the basis of these data, they estimate a mean period of 11.8 years between the initiation of pancreatic tumorigenesis and the formation of the parental, non-metastatic tumour, and a further 6.8 years for the index metastasis clone to arise. These data point to a potentially large window of opportunity during which it might be possible to detect the cancer in a relatively early form. Peter Campbell and colleagues use next-generation sequencing to detect chromosomal rearrangements in 13 patients with pancreatic cancer. The results reveal considerable inter-patient heterogeneity and indicate ongoing genomic instability and evolution during the development of metastases. But for most of the patients studied, more than half of the genetic rearrangements found were present in all metastases and the primary tumour, making them potential targets for therapeutic intervention at early and late stages of the disease. Pancreatic cancer is highly aggressive, usually because of widespread metastasis. Here, next-generation DNA sequencing has been used to detect genomic rearrangements in 13 patients with pancreatic cancer and to explore clonal relationships among metastases. The results reveal not only considerable inter-patient heterogeneity, but also ongoing genomic instability and evolution during the development of metastases. Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97–98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations1,2,3,4,5, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours6,7, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites7, and how the tumour disseminates. Here we harness advances in DNA sequencing8,9,10,11,12 to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2–M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.

1,271 citations


Journal ArticleDOI
21 Jan 2010-Nature
TL;DR: The identification of inactivating mutations in two genes encoding enzymes involved in histone modification and NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified, indicating that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene.
Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.

1,115 citations


Journal ArticleDOI
14 Jan 2010-Nature
TL;DR: Using massively parallel sequencing technology, a small-cell lung cancer cell line, NCI-H209, is sequenced to explore the mutational burden associated with tobacco smoking and identifies a tandem duplication that duplicates exons 3–8 of CHD7 in frame, and another two lines carrying PVT1–CHD7 fusion genes, indicating that ChD7 may be recurrently rearranged in this disease.
Abstract: Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.

1,075 citations


Journal ArticleDOI
01 Apr 2010-Nature
TL;DR: A large, direct genome-wide study of association between CNVs and eight common human diseases concludes that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis ofcommon human diseases.
Abstract: Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.

765 citations


Journal ArticleDOI
TL;DR: Previously identified breast cancer susceptibility loci were found to show larger effect sizes in this study of familial breast cancer cases than in previous population-based studies, consistent with polygenic susceptibility to the disease.
Abstract: Breast cancer is the most common cancer in women in developed countries. To identify common breast cancer susceptibility alleles, we conducted a genome-wide association study in which 582,886 SNPs were genotyped in 3,659 cases with a family history of the disease and 4,897 controls. Promising associations were evaluated in a second stage, comprising 12,576 cases and 12,223 controls. We identified five new susceptibility loci, on chromosomes 9, 10 and 11 (P = 4.6 x 10(-7) to P = 3.2 x 10(-15)). We also identified SNPs in the 6q25.1 (rs3757318, P = 2.9 x 10(-6)), 8q24 (rs1562430, P = 5.8 x 10(-7)) and LSP1 (rs909116, P = 7.3 x 10(-7)) regions that showed more significant association with risk than those reported previously. Previously identified breast cancer susceptibility loci were also found to show larger effect sizes in this study of familial breast cancer cases than in previous population-based studies, consistent with polygenic susceptibility to the disease.

703 citations


Journal ArticleDOI
18 Feb 2010-Nature
TL;DR: Structural signatures are derived that distinguish between homozygous deletions over recessive cancer genes and fragile sites and illustrate how structural signatures can be used to distinguish between the influences of mutation and selection in cancer genomes.
Abstract: The cancer genome is moulded by the dual processes of somatic mutation and selection. Homozygous deletions in cancer genomes occur over recessive cancer genes, where they can confer selective growth advantage, and over fragile sites, where they are thought to reflect an increased local rate of DNA breakage. However, most homozygous deletions in cancer genomes are unexplained. Here we identified 2,428 somatic homozygous deletions in 746 cancer cell lines. These overlie 11% of protein-coding genes that, therefore, are not mandatory for survival of human cells. We derived structural signatures that distinguish between homozygous deletions over recessive cancer genes and fragile sites. Application to clusters of unexplained homozygous deletions suggests that many are in regions of inherent fragility, whereas a small subset overlies recessive cancer genes. The results illustrate how structural signatures can be used to distinguish between the influences of mutation and selection in cancer genomes. The extensive copy number, genotyping, sequence and expression data available for this large series of publicly available cancer cell lines renders them informative reagents for future studies of cancer biology and drug discovery.

683 citations


Journal ArticleDOI
TL;DR: A weight-of-evidence based classification system for identifying individual genes in amplified regions that are selected for during tumour development was proposed in this article, where 77 genes for which there is good evidence of involvement in the development of human cancer were identified.
Abstract: Integrated genome-wide screens of DNA copy number and gene expression in human cancers have accelerated the rate of discovery of amplified and overexpressed genes. However, the biological importance of most of the genes identified in such studies remains unclear. In this Analysis, we propose a weight-of-evidence based classification system for identifying individual genes in amplified regions that are selected for during tumour development. In a census of the published literature we have identified 77 genes for which there is good evidence of involvement in the development of human cancer.

559 citations


Journal ArticleDOI
TL;DR: Examination of COSMIC’s data is primarily web-driven, focused on providing mutation range and frequency statistics based upon a choice of gene and/or cancer phenotype, and Graphical views provide easily interpretable summaries of large quantities of data, and export functions can provide precise details of user-selected data.
Abstract: The catalogue of Somatic Mutations in Cancer (COSMIC) (http://www.sanger.ac.uk/cosmic/) is the largest public resource for information on somatically acquired mutations in human cancer and is available freely without restrictions. Currently (v43, August 2009), COSMIC contains details of 1.5-million experiments performed through 13 423 genes in almost 370 000 tumours, describing over 90 000 individual mutations. Data are gathered from two sources, publications in the scientific literature, (v43 contains 7797 curated articles) and the full output of the genome-wide screens from the Cancer Genome Project (CGP) at the Sanger Institute, UK. Most of the world’s literature on point mutations in human cancer has now been curated into COSMIC and while this is continually updated, a greater emphasis on curating fusion gene mutations is driving the expansion of this information; over 2700 fusion gene mutations are now described. Whole-genome sequencing screens are now identifying large numbers of genomic rearrangements in cancer and COSMIC is now displaying details of these analyses also. Examination of COSMIC’s data is primarily web-driven, focused on providing mutation range and frequency statistics based upon a choice of gene and/or cancer phenotype. Graphical views provide easily interpretable summaries of large quantities of data, and export functions can provide precise details of user-selected data.

553 citations


Journal ArticleDOI
TL;DR: A genome-wide association study for testicular germ cell tumor is conducted, genotyping 298,782 SNPs in 979 affected individuals and 4,947 controls from the UK and replicating associations in a further 664 cases and 3,456 controls.
Abstract: We conducted a genome-wide association study for testicular germ cell tumor, genotyping 298,782 SNPs in 979 affected individuals and 4,947 controls from the UK and replicating associations in a further 664 cases and 3,456 controls. We identified three new susceptibility loci, two of which include genes that are involved in telomere regulation. We identified two independent signals within the TERT-CLPTM1L locus on chromosome 5, which has previously been associated with multiple other cancers (rs4635969, OR=1.54, P=1.14x10(-23); rs2736100, OR=1.33, P=7.55x10(-15)). We also identified a locus on chromosome 12 (rs2900333, OR=1.27, P=6.16x10(-10)) that contains ATF7IP, a regulator of TERT expression. Finally, we identified a locus on chromosome 9 (rs755383, OR=1.37, P=1.12x10(-23)), containing the sex determination gene DMRT1, which has been linked to teratoma susceptibility in mice.

Journal ArticleDOI
TL;DR: A preprocessing transformation and hidden Markov model algorithm bespoke to cancer produces genotype classification, specification of regions of loss of heterozygosity, and absolute allelic copy number segmentation.
Abstract: High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are aneuploid in nature leading to systematic errors when using these techniques. We introduce a preprocessing transformation and hidden Markov model algorithm bespoke to cancer. This produces genotype classification, specification of regions of loss of heterozygosity, and absolute allelic copy number segmentation. Accurate prediction is demonstrated with a combination of independent experimental techniques. These methods are exemplified with affymetrix genome-wide SNP6.0 data from 755 cancer cell lines, enabling inference upon a number of features of biological interest. These data and the coded algorithm are freely available for download.

Journal ArticleDOI
TL;DR: Next‐generation sequencing now allows rapid identification of patient‐specific rearrangements in solid tumors, and it is shown that PCR assays for rearrangement could detect a single copy of the tumor genome in plasma without false positives.
Abstract: Detection of recurrent somatic rearrangements routinely allows monitoring of residual disease burden in leukemias, but is not used for most solid tumors. However, next-generation sequencing now allows rapid identification of patient-specific rearrangements in solid tumors. We mapped genomic rearrangements in three cancers and showed that PCR assays for rearrangements could detect a single copy of the tumor genome in plasma without false positives. Disease status, drug responsiveness, and incipient relapse could be serially assessed. In future, this strategy could be readily established in diagnostic laboratories, with major impact on monitoring of disease status and personalizing treatment of solid tumors.

Journal ArticleDOI
TL;DR: Genetic analysis in thousands of patients and control subjects suggests that the PTCHD1 gene may be part of the Hedgehog signaling pathway, which is important in embryonic development, and suggests that this locus is involved in ~1% of individuals with ASD and intellectual disability.
Abstract: Autism is a common neurodevelopmental disorder with a complex mode of inheritance. It is one of the most highly heritable of the complex disorders, although the underlying genetic factors remain largely unknown. Here, we report mutations in the X-chromosome PTCHD1 (patched-related) gene in seven families with autism spectrum disorder (ASD) and in three families with intellectual disability. A 167-kilobase microdeletion spanning exon 1 was found in two brothers, one with ASD and the other with a learning disability and ASD features; a 90-kilobase microdeletion spanning the entire gene was found in three males with intellectual disability in a second family. In 900 probands with ASD and 208 male probands with intellectual disability, we identified seven different missense changes (in eight male probands) that were inherited from unaffected mothers and not found in controls. Two of the ASD individuals with missense changes also carried a de novo deletion at another ASD susceptibility locus (DPYD and DPP6), suggesting complex genetic contributions. In additional males with ASD, we identified deletions in the 5' flanking region of PTCHD1 that disrupted a complex noncoding RNA and potential regulatory elements; equivalent changes were not found in male control individuals. Thus, our systematic screen of PTCHD1 and its 5' flanking regions suggests that this locus is involved in ~1% of individuals with ASD and intellectual disability.

Journal ArticleDOI
TL;DR: It is shown that a mutation of IQSEC2, encoding a guanine nucleotide exchange factor for the ADP-ribosylation factor family of small GTPases, caused MRX1, the X chromosome exome resequencing disorder.
Abstract: Cheryl Shoubridge and Jozef Gecz and colleagues report the identification of mutations in IQSEC2, a guanine nucleotide exchange factor for ARF GTPases, in individuals with non-syndromic intellectual disability. The first family identified as having a nonsyndromic intellectual disability was mapped in 1988. Here we show that a mutation of IQSEC2, encoding a guanine nucleotide exchange factor for the ADP-ribosylation factor family of small GTPases, caused this disorder. In addition to MRX1, IQSEC2 mutations were identified in three other families with X-linked intellectual disability. This discovery was made possible by systematic and unbiased X chromosome exome resequencing.

Journal ArticleDOI
TL;DR: This study informs discussion of alternative mutational mechanisms, such as noncoding variants and non-X-linked disease, which might explain the shortfall of mutation yield in the well-characterized International Genetics of Learning Disability (IGOLD) cohort, where currently disease remains unexplained in two-thirds of families.
Abstract: Copy number variants and indels in 251 families with evidence of X-linked intellectual disability (XLID) were investigated by array comparative genomic hybridization on a high-density oligonucleotide X chromosome array platform. We identified pathogenic copy number variants in 10% of families, with mutations ranging from 2 kb to 11 Mb in size. The challenge of assessing causality was facilitated by prior knowledge of XLID-associated genes and the ability to test for cosegregation of variants with disease through extended pedigrees. Fine-scale analysis of rare variants in XLID families leads us to propose four additional genes, PTCHD1, WDR13, FAAH2, and GSPT2, as candidates for XLID causation and the identification of further deletions and duplications affecting X chromosome genes but without apparent disease consequences. Breakpoints of pathogenic variants were characterized to provide insight into the underlying mutational mechanisms and indicated a predominance of mitotic rather than meiotic events. By effectively bridging the gap between karyotype-level investigations and X chromosome exon resequencing, this study informs discussion of alternative mutational mechanisms, such as noncoding variants and non-X-linked disease, which might explain the shortfall of mutation yield in the well-characterized International Genetics of Learning Disability (IGOLD) cohort, where currently disease remains unexplained in two-thirds of families.

Journal ArticleDOI
TL;DR: The phenotypic spectrum is defined and it is demonstrated that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR, a striking feature not previously reported.
Abstract: Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR, a striking feature not previously reported.

Journal ArticleDOI
TL;DR: Real time quantitative PCR analysis of all amplicon 6p21.2 genes in 618 human cancer cell lines identified GLO1, encoding glyoxalase 1, to be the most frequently amplified gene [twofold or greater amplification in 8.4% (49/536) of cancers].
Abstract: To identify a novel amplified cancer gene a systematic screen of 975 human cancer DNA samples, 750 cell lines and 225 primary tumors, using the Affymetrix 10K SNP microarray was undertaken. The screen identified 193 amplicons. A previously uncharacterized amplicon located on 6p21.2 whose 1 Mb minimal common amplified region contained eight genes (GLO1, DNAH8, GLP1R, C6orf64, KCNK5, KCNK17, KCNK16, and C6orf102) was further investigated to determine which gene(s) are the biological targets of this amplicon. Real time quantitative PCR (qPCR) analysis of all amplicon 6p21.2 genes in 618 human cancer cell lines identified GLO1, encoding glyoxalase 1, to be the most frequently amplified gene [twofold or greater amplification in 8.4% (49/536) of cancers]. Also the association between amplification and overexpression was greatest for GLO1. RNAi knockdown of GLO1 had the greatest and most consistent impact on cell accumulation and apoptosis. Cell lines with GLO1 amplification were more sensitive to inhibition of GLO1 by bromobenzylglutathione cyclopentyl diester (BBGC). Subsequent qPCR of 520 primary tumor samples identified twofold and greater amplification of GLO1 in 8/37 (22%) of breast, 12/71 (17%) of sarcomas, 6/53 (11.3%) of nonsmall cell lung, 2/23 (8.7%) of bladder, 6/93 (6.5%) of renal and 5/83 (6%) of gastric cancers. Amplification of GLO1 was rare in colon cancer (1/35) and glioma (1/94). Collectively the results indicate that GLO1 is at least one of the targets of gene amplification on 6p21.2 and may represent a useful target for therapy in cancers with GLO1 amplification.

Journal ArticleDOI
TL;DR: It is reported herein that glycation of DNA by glyoxal and methylglyoxal produces a quantitatively important class of nucleotide adduct in physiological systems—imidazopurinones, and these findings suggest that imidazoclineinones are a major type of endogenous DNA damage.
Abstract: Glyoxal and methylglyoxal are reactive dicarbonyl metabolites formed and metabolized in physiological systems. Increased exposure to these dicarbonyls is linked to mutagenesis and cytotoxicity and enhanced dicarbonyl metabolism by overexpression of glyoxalase 1 is linked to tumour multidrug resistance in cancer chemotherapy. We report herein that glycation of DNA by glyoxal and methylglyoxal produces a quantitatively important class of nucleotide adduct in physiological systems—imidazopurinones. The adduct derived from methylglyoxal-3-(2′-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one isomers—was the major quantitative adduct detected in mononuclear leukocytes in vivo and tumour cell lines in vitro. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell permeable glyoxalase 1 inhibitor. Unexpectedly, the DNA content of methylglyoxal-derived imidazopurinone and oxidative marker 7,8-dihydro-8-oxo-2′-deoxyguanosine were increased moderately in glyoxalase 1-linked multidrug resistant tumour cell lines. Together these findings suggest that imidazopurinones are a major type of endogenous DNA damage and glyoxalase 1 overexpression in tumour cells strives to counter increased imidazopurinone formation in tumour cells likely linked to their high glycolytic activity.

Journal ArticleDOI
TL;DR: A de novo PCDH19 mutation in a sporadic female highlights that mutational analysis should be considered in isolated instances of girls with infantile onset seizures and developmental delay, in addition to those with the characteristic family history of EFMR.
Abstract: Background: Epilepsy and Mental Retardation Limited to Females (EFMR) is an intriguing X-linked disorder affecting heterozygous females and sparing hemizygous males. Mutations in the protocadherin 19 (PCDH19) gene have been identified in seven unrelated families with EFMR. Methods and Results: Here, we assessed the frequency of PCDH19 mutations in individuals with clinical features which overlap those of EFMR. We analysed 185 females from three cohorts: 42 with Rett syndrome (RS) who were negative for MECP2 and CDKL5 mutations, 57 with autism spectrum disorders (ASD) and 86 with epilepsy with or without intellectual disability (ID). No mutations were identified in the RS and ASD cohorts suggesting that despite sharing similar clinical characteristics with EFMR, PCDH19 mutations are not generally associated with these disorders. Among the 86 females with epilepsy (of whom 51 had seizure onset before 3 years), with or without ID, we identified two (2.3%) missense changes. One (c.1671C>G, p.N557K), reported previously without clinical data, was found in two affected sisters, the first EFMR family without a multigenerational family history of affected females [1]. The second, reported here, is a novel de novo missense change identified in a sporadic female. The change, p.S276P, is predicted to result in functional disturbance of PCDH19 as it affects a highly conserved residue adjacent to the adhesion interface of EC3 of PCDH19. Conclusions: This de novo PCDH19 mutation in a sporadic female highlights that mutational analysis should be considered in isolated instances of girls with infantile onset seizures and developmental delay, in addition to those with the characteristic family history of EFMR.

Journal ArticleDOI
TL;DR: It is concluded that the two novel nucleotide changes identified impair JARID1C protein function and are disease-causing mutations in these families.
Abstract: Mental retardation (MR) is characterized by cognitive impairment with an IQ A) in a published family with nonsyndromic MR, MRX13. This change occurs in a highly conserved amino acid, with proline (P) being substituted by threonine (T) (p.P544T). Functional analysis shows that this amino-acid substitution compromises both tri- and didemethylase activity of the JARID1C protein. We conclude that the two novel changes impair JARID1C protein function and are disease-causing mutations in these families.

Journal ArticleDOI
TL;DR: News of nonsense mutations in SLC9A6, the gene encoding the sodium/hydrogen exchanger NHE6, in the family first reported and in three others is reported, and the clinical similarities to Angelman syndrome confirmed.
Abstract: Christianson syndrome is an X-linked mental retardation syndrome characterized by microcephaly, impaired ocular movement, severe global developmental delay, hypotonia which progresses to spasticity, and early onset seizures of variable types. Gilfillan et al.2008] reported mutations in SLC9A6, the gene encoding the sodium/hydrogen exchanger NHE6, in the family first reported and in three others. They also noted the clinical similarities to Angelman syndrome and found cerebellar atrophy on MRI and elevated glutamate/glutamine in the basal ganglia on MRS. Here we report on nonsense mutations in two additional families. The natural history is detailed in childhood and adult life, the similarities to Angelman syndrome confirmed, and the MRI/MRS findings documented in three affected boys.

Journal ArticleDOI
TL;DR: CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development, and two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast are found.
Abstract: CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development.

Journal ArticleDOI
TL;DR: The utility of genome-wide paired-end sequencing in the delineation of apparently balanced chromosomal translocations is demonstrated, for which it is likely to become the method of choice.
Abstract: BACKGROUND: Localisation of the breakpoints of chromosomal translocations has aided the discovery of several disease genes but has traditionally required laborious investigation of chromosomes by fluorescent in situ hybridisation approaches. Here, a strategy that utilises genome-wide paired-end massively parallel DNA sequencing to rapidly map translocation breakpoints is reported. This method was used to fine map a de novo t(5;6)(q21;q21) translocation in a child with bilateral, young-onset Wilms tumour. METHODS AND RESULTS: Genome-wide paired-end sequencing was performed for approximately 6 million randomly generated approximately 3 kb fragments from constitutional DNA containing the translocation, and six fragments in which one end mapped to chromosome 5 and the other to chromosome 6 were identified. This mapped the translocation breakpoints to within 1.7 kb. Then, PCR assays that amplified across the rearrangement junction were designed to characterise the breakpoints at sequence-level resolution. The 6q21 breakpoint transects and truncates HACE1, an E3 ubiquitin-protein ligase that has been implicated as a somatically inactivated target in Wilms tumourigenesis. To evaluate the contribution of HACE1 to Wilms tumour predisposition, the gene was mutationally screened in 450 individuals with Wilms tumour. One child with unilateral Wilms tumour and a truncating HACE1 mutation was identified. CONCLUSIONS: These data indicate that constitutional disruption of HACE1 likely predisposes to Wilms tumour. However, HACE1 mutations are rare and therefore can only make a small contribution to Wilms tumour incidence. More broadly, this study demonstrates the utility of genome-wide paired-end sequencing in the delineation of apparently balanced chromosomal translocations, for which it is likely to become the method of choice.

Journal ArticleDOI
TL;DR: Clinopathologic characteristics in these familial TGCT cases were similar to those generally described for nonfamilial cases, however, a unique presentation of familialTGCT among cousin pairs was observed.
Abstract: Objectives: Familial aggregation of testicular germ cell tumor (TGCT) has been reported, but it is unclear if familial TGCT represents a unique entity with distinct clinicopathologic characteristics. Here we describe a collection of familial TGCT cases from an international consortium, in an effort to elucidate any clinical characteristics that are specific to this population. Materials and methods: Families with >= 2 cases of TGCT enrolled at 18 of the sites participating in the International Testicular Cancer Linkage Consortium were included. We analyzed clinicopathologic characteristics of 985 cases from 461 families. Results: A majority (88.5%) of families had only 2 cases of TGCT. Men with seminoma (50% of cases) had an older mean age at diagnosis than nonseminoma cases (P = 0.001). Among individuals with a history of cryptorchidism. TGCT was more likely to occur in the ipsilateral testis (kappa = 0.65). Cousin pairs appeared to represent a unique group, with younger age at diagnosis and a higher prevalence of cryptorchidism than other families. Conclusions: Clinicopathologic characteristics in these familial TGCT cases were similar to those generally described for nonfamilial eases. However, we observed a unique presentation of familial TGCT among cousin pairs. Additional studies are needed to further explore this observation. Published by Elsevier Inc.

Journal ArticleDOI
TL;DR: This work combines high-resolution CGH analysis of 598 human cancer cell lines with insertion sites isolated from 1,005 mouse tumors induced with the murine leukemia virus to reveal candidate tumor suppressor genes and oncogenes mutated in both human and mouse tumors.
Abstract: Comparative genomic hybridization (CGH) can reveal important disease genes but the large regions identified could sometimes contain hundreds of genes. Here we combine high-resolution CGH analysis of 598 human cancer cell lines with insertion sites isolated from 1,005 mouse tumors induced with the murine leukemia virus (MuLV). This cross-species oncogenomic analysis revealed candidate tumor suppressor genes and oncogenes mutated in both human and mouse tumors, making them strong candidates for novel cancer genes. A significant number of these genes contained binding sites for the stem cell transcription factors Oct4 and Nanog. Notably, mice carrying tumors with insertions in or near stem cell module genes, which are thought to participate in cell self-renewal, died significantly faster than mice without these insertions. A comparison of the profile we identified to that induced with the Sleeping Beauty (SB) transposon system revealed significant differences in the profile of recurrently mutated genes. Collectively, this work provides a rich catalogue of new candidate cancer genes for functional analysis.

01 Jan 2010
TL;DR: A weight-of-evidence based classification system for identifying individual genes in amplified regions that are selected for during tumour development and 77 genes for which there is good evidence of involvement in the development of human cancer are proposed.
Abstract: Integrated genome-wide screens of DNA copy number and gene expression in human cancers have accelerated the rate of discovery of amplified and overexpressed genes. However, the biological importance of most of the genes identified in such studies remains unclear. In this Analysis, we propose a weight-of-evidence based classification system for identifying individual genes in amplified regions that are selected for during tumour development. In a census of the published literature we have identified 77 genes for which there is good evidence of involvement in the development of human cancer.

Journal ArticleDOI
TL;DR: Paired-end sequencing of mouse mammary tumors revealed that they display significant heterogeneity in their profiles of somatic rearrangement but, importantly, fewer rearrangements than cognate human mammary cancers, probably because these cancers have been induced by strong driver mutations engineered into the mouse genome.
Abstract: Background: Here we present the first paired-end sequencing of tumors from genetically engineered mouse models of cancer to determine how faithfully these models recapitulate the landscape of somatic rearrangements found in human tumors. These were models of Trp53-mutated breast cancer, Brca1- and Brca2-associated hereditary breast cancer, and E-cadherin (Cdh1) mutated lobular breast cancer. Results: We show that although Brca1- and Brca2-deficient mouse mammary tumors have a defect in the homologous recombination pathway, there is no apparent difference in the type or frequency of somatic rearrangements found in these cancers when compared to other mouse mammary cancers, and tumors from all genetic backgrounds showed evidence of microhomology-mediated repair and non-homologous end-joining processes. Importantly, mouse mammary tumors were found to carry fewer structural rearrangements than human mammary cancers and expressed in-frame fusion genes. Like the fusion genes found in human mammary tumors, these were not recurrent. One mouse tumor was found to contain an internal deletion of exons of the Lrp1b gene, which led to a smaller in-frame transcript. We found internal in-frame deletions in the human ortholog of this gene in a significant number (4.2%) of human cancer cell lines. Conclusions: Paired-end sequencing of mouse mammary tumors revealed that they display significant heterogeneity in their profiles of somatic rearrangement but, importantly, fewer rearrangements than cognate human mammary tumors, probably because these cancers have been induced by strong driver mutations engineered into the mouse genome. Both human and mouse mammary cancers carry expressed fusion genes and conserved homozygous deletions.

Journal ArticleDOI
TL;DR: Analysis of GEN1 indicates that although it also plays a key role in double-strand DNA break repair, GEN1 does not make an appreciable contribution to breast cancer susceptibility by acting as a high- or intermediate-penetrance breast cancer predisposition gene like BRCA1, BRC a2, CHEK2, ATM, BRIP1 and PALB2 and that common GEN1 variants do not act as low- penetrance susceptibility alleles analogous to SNPs
Abstract: GEN1 was recently identified as a key Holliday junction resolvase involved in homologous recombination. Somatic truncating GEN1 mutations have been reported in two breast cancers. Together these data led to the proposition that GEN1 is a breast cancer predisposition gene. In this article we have formally investigated this hypothesis. We performed full-gene mutational analysis of GEN1 in 176 BRCA1/2-negative familial breast cancer samples and 159 controls. We genotyped six SNPs tagging the 30 common variants in the transcribed region of GEN1 in 3,750 breast cancer cases and 4,907 controls. Mutation analysis revealed one truncating variant, c.2515_2519delAAGTT, which was present in 4% of cases and 4% of controls. We identified control individuals homozygous for the deletion, demonstrating that the last 69 amino acids of GEN1 are dispensable for its function. We identified 17 other variants, but their frequency did not significantly differ between cases and controls. Analysis of 3,750 breast cancer cases and 4,907 controls demonstrated no evidence of significant association with breast cancer for six SNPs tagging the 30 common GEN1 variants. These data indicate that although it also plays a key role in double-strand DNA break repair, GEN1 does not make an appreciable contribution to breast cancer susceptibility by acting as a high- or intermediate-penetrance breast cancer predisposition gene like BRCA1, BRCA2, CHEK2, ATM, BRIP1 and PALB2 and that common GEN1 variants do not act as low-penetrance susceptibility alleles analogous to SNPs in FGFR2. Furthermore, our analyses demonstrate the importance of undertaking appropriate genetic investigations, typically full gene screening in cases and controls together with large-scale case-control association analyses, to evaluate the contribution of genes to cancer susceptibility.

Journal ArticleDOI
TL;DR: These data do not show that ZNF630 deletions or duplications are associated with mental retardation, but suggest that mutations of ZNF 630 might influence cognitive function.
Abstract: ZNF630 is a member of the primate-specific Xp11 zinc finger gene cluster that consists of six closely related genes, of which ZNF41, ZNF81, and ZNF674 have been shown to be involved in mental retardation. This suggests that mutations of ZNF630 might influence cognitive function. Here, we detected 12 ZNF630 deletions in a total of 1,562 male patients with mental retardation from Brazil, USA, Australia, and Europe. The breakpoints were analyzed in 10 families, and in all cases they were located within two segmental duplications that share more than 99% sequence identity, indicating that the deletions resulted from non-allelic homologous recombination. In 2,121 healthy male controls, 10 ZNF630 deletions were identified. In total, there was a 1.6-fold higher frequency of this deletion in males with mental retardation as compared to controls, but this increase was not statistically significant (P-value = 0.174). Conversely, a 1.9-fold lower frequency of ZNF630 duplications was observed in patients, which was not significant either (P-value = 0.163). These data do not show that ZNF630 deletions or duplications are associated with mental retardation.