scispace - formally typeset
K

Kai Ye

Researcher at Washington University in St. Louis

Publications -  79
Citations -  37941

Kai Ye is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Genome & Biology. The author has an hindex of 35, co-authored 57 publications receiving 29701 citations. Previous affiliations of Kai Ye include University of Washington & Leiden University.

Papers
More filters
Journal ArticleDOI

A global reference for human genetic variation.

Adam Auton, +517 more
- 01 Oct 2015 - 
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Journal ArticleDOI

Integrated genomic characterization of endometrial carcinoma

Gad Getz, +283 more
- 02 May 2013 - 
TL;DR: In this paper, the authors performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array-and-sequencing-based technologies, and classified them into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy number high.
Journal ArticleDOI

Mutational landscape and significance across 12 major cancer types

TL;DR: Data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types are presented as part of the TCGA Pan-Cancer effort, and clinical association analysis identifies genes having a significant effect on survival.

A global reference for human genetic variation

Adam Auton, +479 more
TL;DR: The 1000 Genomes Project as mentioned in this paper provided a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and reported the completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole genome sequencing, deep exome sequencing and dense microarray genotyping.

Integrated genomic characterization of endometrial carcinoma

Gad Getz, +271 more
TL;DR: The genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours, and these features are classified into four categories: POLE ultramutated, microsatellite instability hypermutated, copy- number low, and copy-number high.