scispace - formally typeset
T

Tracy Lemon

Researcher at Allen Institute for Brain Science

Publications -  13
Citations -  9634

Tracy Lemon is an academic researcher from Allen Institute for Brain Science. The author has contributed to research in topics: Neocortex & Gene. The author has an hindex of 10, co-authored 13 publications receiving 7868 citations.

Papers
More filters
Journal ArticleDOI

Genome-wide atlas of gene expression in the adult mouse brain

Ed S. Lein, +109 more
- 11 Jan 2007 - 
TL;DR: An anatomically comprehensive digital atlas containing the expression patterns of ∼20,000 genes in the adult mouse brain is described, providing an open, primary data resource for a wide variety of further studies concerning brain organization and function.
Journal ArticleDOI

An anatomically comprehensive atlas of the adult human brain transcriptome

TL;DR: A transcriptional atlas of the adult human brain is described, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals, to form a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.
Journal ArticleDOI

Transcriptional landscape of the prenatal human brain

TL;DR: An anatomically comprehensive atlas of the mid-gestational human brain is described, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions.
Journal ArticleDOI

An anatomic transcriptional atlas of human glioblastoma

TL;DR: The Ivy Glioblastoma Atlas is presented, an anatomically based transcriptional atlas of human gliOBlastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor.
Journal ArticleDOI

Classification of electrophysiological and morphological neuron types in the mouse visual cortex.

TL;DR: A single-cell characterization pipeline is established using standardized patch-clamp recordings in brain slices and biocytin-based neuronal reconstructions to establish a morpho-electrical taxonomy of cell types for the mouse visual cortex via unsupervised clustering analysis of multiple quantitative features.