scispace - formally typeset
Search or ask a question
Institution

Jawaharlal Nehru University

EducationNew Delhi, India
About: Jawaharlal Nehru University is a education organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Politics. The organization has 6082 authors who have published 13455 publications receiving 245407 citations. The organization is also known as: JNU.


Papers
More filters
Journal ArticleDOI
TL;DR: The identification of mutations in the propeller domains of Kelch 13 as the primary marker for artemisinin resistance in P. falciparum is described and two major mechanisms of resistance that have been independently proposed are explored: the activation of the unfolded protein response and proteostatic dysregulation of parasite phosphatidylinositol 3- kinase.
Abstract: Haldar and colleagues discuss markers and mechanisms of resistance to artemisinins and artemisinin-based combination therapies. They describe the identification of Plasmodium falciparum Kelch 13 as the primary and, to date, sole causative maker of artemisinin resistance in P. falciparum and explore two proposed resistance mechanisms. They emphasize continuing challenges to improve detection strategies and new drug development strategies.

263 citations

Journal ArticleDOI
TL;DR: An integrated strategy for large-scale identification of new miR-210 targets by combining transcriptomics and proteomics with bioinformatic approaches is described and a new role of this miRNA is predicted in RNA processing, DNA binding, development, membrane trafficking, and amino acid catabolism is predicted.

261 citations

Journal ArticleDOI
TL;DR: It is concluded that the mainstream interpretation of the O–J–I–P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of QA at the end of theO–J phase, and for the origin of the fluorescence rise during the thermal phase.
Abstract: The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O–J rise, related mainly to the reduction of QA, the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J–I–P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized QA is the most important quencher influencing the O–J–I–P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of QA, Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [QA −] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O–J–I–P transient. The main idea in these alternative theories is that in saturating light, QA is almost completely reduced already at the end of the photochemical phase O–J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides QA, or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J–I–P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O–J–I–P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of QA at the end of the O–J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O–J–I–P transient in parallel with the reduction of QA, through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation–reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J–I–P rise during Chl a FI in plants and algae.

260 citations

Journal ArticleDOI
TL;DR: Application of sludge increased both total and bio-available forms of metals in the soils, while lime application decreased the bioavailability of heavy metals in sludge-amended soils, so the best possible treatment may be recommended.

259 citations

Journal ArticleDOI
TL;DR: An important role of glyoxalase I is suggested in conferring tolerance to plants under stress conditions by showing that the tolerance to different salt concentrations was correlated with the degree of Gly I expression.
Abstract: Despite its ubiquitous presence, the role of glyoxalase I has not been well investigated in plants. In order to find out its physiological functions, we have cloned and characterized a cDNA from Brassica juncea encoding glyoxalase I (Gly I) and made transgenic tobacco plants harbouring Gly I in both sense and antisense orientation. The transgenic nature of the plants was confirmed by Southern blotting, and the estimated number of genes inserted ranged from one to six. The transcript and protein levels of glyoxalase I were also monitored in transgenic plants. The expression of glyoxalase I in B. juncea was upregulated in response to salt, water and heavy metal stresses. In response to a high concentration of salt, the transcript level averaged threefold higher in 72 h, and an increase in the protein was also seen by immunoblotting. The transgenic plants over-expressing glyoxalase I showed significant tolerance to methylglyoxal and high salt, as tested in detached leaf disc senescence assay. A comparison of plants expressing high and low levels of glyoxalase I showed that the tolerance to different salt concentrations was correlated with the degree of glyoxalase I expression. Our results suggest an important role of glyoxalase I in conferring tolerance to plants under stress conditions.

258 citations


Authors

Showing all 6255 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Sanjay Gupta9990235039
Rakesh Kumar91195939017
Praveen Kumar88133935718
Rajendra Prasad8694529526
Mukesh K. Jain8553927485
Shiv Kumar Sarin8474028368
Gaurav Sharma82124431482
Santosh Kumar80119629391
Dinesh Mohan7928335775
Govindjee7642621800
Dipak K. Das7532717708
Amit Verma7049716162
Manoj Kumar6540816838
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

93% related

Banaras Hindu University
23.9K papers, 464.6K citations

91% related

International Institute of Minnesota
17.4K papers, 537.4K citations

90% related

Panjab University, Chandigarh
18.7K papers, 461K citations

90% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202385
2022314
20211,314
20201,240
20191,066
20181,012