scispace - formally typeset
Search or ask a question
Institution

Karolinska Institutet

EducationStockholm, Sweden
About: Karolinska Institutet is a education organization based out in Stockholm, Sweden. It is known for research contribution in the topics: Population & Cancer. The organization has 46212 authors who have published 121142 publications receiving 6008130 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of velocity rescaling on the self-diffusion coefficient D and radial distribution functions, gOO, gOH, and gHH for all five water models were determined and compared to experimental data.
Abstract: Molecular dynamics simulations of five water models, the TIP3P (original and modified), SPC (original and refined), and SPC/E (original), were performed using the CHARMM molecular mechanics program. All simulations were carried out in the microcanonical NVE ensemble, using 901 water molecules in a cubic simulation cell furnished with periodic boundary conditions at 298 K. The SHAKE algorithm was used to keep water molecules rigid. Nanosecond trajectories were calculated with all water models for high statistical accuracy. The characteristic self-diffusion coefficients D and radial distribution functions, gOO, gOH, and gHH for all five water models were determined and compared to experimental data. The effects of velocity rescaling on the self-diffusion coefficient D were examined. All these empirical water models used in this study are similar by having three interaction sites, but the small differences in their pair potentials composed of Lennard-Jones (LJ) and Coulombic terms give significant difference...

2,223 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Lorenzo Galluzzi3, Stuart A. Aaronson4, John M. Abrams5, Emad S. Alnemri6, David W. Andrews7, Eric H. Baehrecke8, Nicolas G. Bazan9, Mikhail V. Blagosklonny10, Klas Blomgren11, Klas Blomgren12, Christoph Borner13, Dale E. Bredesen14, Dale E. Bredesen15, Catherine Brenner16, Maria Castedo3, Maria Castedo1, Maria Castedo2, John A. Cidlowski17, Aaron Ciechanover18, Gerald M. Cohen19, V De Laurenzi20, R De Maria21, Mohanish Deshmukh22, Brian David Dynlacht23, Wafik S. El-Deiry24, Richard A. Flavell25, Richard A. Flavell26, Simone Fulda27, Carmen Garrido28, Carmen Garrido2, Pierre Golstein16, Pierre Golstein29, Pierre Golstein2, Marie-Lise Gougeon30, Douglas R. Green, Hinrich Gronemeyer31, Hinrich Gronemeyer16, Hinrich Gronemeyer2, György Hajnóczky6, J. M. Hardwick32, Michael O. Hengartner33, Hidenori Ichijo34, Marja Jäättelä, Oliver Kepp2, Oliver Kepp1, Oliver Kepp3, Adi Kimchi35, Daniel J. Klionsky36, Richard A. Knight37, Sally Kornbluth38, Sharad Kumar, Beth Levine5, Beth Levine26, Stuart A. Lipton, Enrico Lugli17, Frank Madeo39, Walter Malorni21, Jean-Christophe Marine40, Seamus J. Martin41, Jan Paul Medema42, Patrick Mehlen43, Patrick Mehlen16, Gerry Melino19, Gerry Melino44, Ute M. Moll45, Ute M. Moll46, Eugenia Morselli3, Eugenia Morselli2, Eugenia Morselli1, Shigekazu Nagata47, Donald W. Nicholson48, Pierluigi Nicotera19, Gabriel Núñez36, Moshe Oren35, Josef M. Penninger49, Shazib Pervaiz50, Marcus E. Peter51, Mauro Piacentini44, Jochen H. M. Prehn52, Hamsa Puthalakath53, Gabriel A. Rabinovich54, Rosario Rizzuto55, Cecília M. P. Rodrigues56, David C. Rubinsztein57, Thomas Rudel58, Luca Scorrano59, Hans-Uwe Simon60, Hermann Steller26, Hermann Steller61, J. Tschopp62, Yoshihide Tsujimoto63, Peter Vandenabeele64, Ilio Vitale2, Ilio Vitale3, Ilio Vitale1, Karen H. Vousden65, Richard J. Youle17, Junying Yuan66, Boris Zhivotovsky67, Guido Kroemer3, Guido Kroemer2, Guido Kroemer1 
University of Paris-Sud1, French Institute of Health and Medical Research2, Institut Gustave Roussy3, Icahn School of Medicine at Mount Sinai4, University of Texas Southwestern Medical Center5, Thomas Jefferson University6, McMaster University7, University of Massachusetts Medical School8, LSU Health Sciences Center New Orleans9, Roswell Park Cancer Institute10, Boston Children's Hospital11, University of Gothenburg12, University of Freiburg13, Buck Institute for Research on Aging14, University of California, San Francisco15, Centre national de la recherche scientifique16, National Institutes of Health17, Technion – Israel Institute of Technology18, University of Leicester19, University of Chieti-Pescara20, Istituto Superiore di Sanità21, University of North Carolina at Chapel Hill22, New York University23, University of Pennsylvania24, Yale University25, Howard Hughes Medical Institute26, University of Ulm27, University of Burgundy28, Aix-Marseille University29, Pasteur Institute30, University of Strasbourg31, Johns Hopkins University32, University of Zurich33, University of Tokyo34, Weizmann Institute of Science35, University of Michigan36, University College London37, Duke University38, University of Graz39, Ghent University40, Trinity College, Dublin41, University of Amsterdam42, University of Lyon43, University of Rome Tor Vergata44, University of Göttingen45, Stony Brook University46, Kyoto University47, Merck & Co.48, Austrian Academy of Sciences49, National University of Singapore50, University of Chicago51, Royal College of Surgeons in Ireland52, La Trobe University53, University of Buenos Aires54, University of Padua55, University of Lisbon56, University of Cambridge57, University of Würzburg58, University of Geneva59, University of Bern60, Rockefeller University61, University of Lausanne62, Osaka University63, University of California, San Diego64, University of Glasgow65, Harvard University66, Karolinska Institutet67
TL;DR: A nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls is provided and the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells is emphasized.
Abstract: Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios Thus far, dozens of methods have been proposed to quantify cell death-related parameters However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells

2,218 citations

Journal ArticleDOI
TL;DR: The International League Against Epilepsy (ILAE) and the International Bureau for Epilepsia (IBE) have come to consensus definitions for the terms epileptic seizure and epilepsy.
Abstract: The International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) have come to consensus definitions for the terms epileptic seizure and epilepsy. An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures and by the neurobiologic, cognitive, psychological, and social consequences of this condition. The definition of epilepsy requires the occurrence of at least one epileptic seizure.

2,201 citations

Journal ArticleDOI
TL;DR: Phobius, a combined transmembrane protein topology and signal peptide predictor based on a hidden Markov model, noted a drastic reduction of false classifications compared to TMHMM/SignalP, suggesting that Phobius is well suited for whole-genome annotation of signal peptides and trans Membrane regions.

2,191 citations

Journal ArticleDOI
TL;DR: Authors/Task Force Members: Massimo F. Piepoli (Chairperson), Arno W. Hoes (Co-Chairperson) (The Netherlands), Stefan Agewall (Norway) 1, Christian Albus (Germany)9, Carlos Brotons (Spain)10, Alberico L. Catapano (Italy)3, Marie-Therese Cooney (Ireland)1, Ugo Corrà (Italy).
Abstract: Authors/Task Force Members: Massimo F. Piepoli* (Chairperson) (Italy), Arno W. Hoes* (Co-Chairperson) (The Netherlands), Stefan Agewall (Norway)1, Christian Albus (Germany)9, Carlos Brotons (Spain)10, Alberico L. Catapano (Italy)3, Marie-Therese Cooney (Ireland)1, Ugo Corrà (Italy)1, Bernard Cosyns (Belgium)1, Christi Deaton (UK)1, Ian Graham (Ireland)1, Michael Stephen Hall (UK)7, F. D. Richard Hobbs (UK)10, Maja-Lisa Løchen (Norway)1, Herbert Löllgen (Germany)8, Pedro Marques-Vidal (Switzerland)1, Joep Perk (Sweden)1, Eva Prescott (Denmark)1, Josep Redon (Spain)5, Dimitrios J. Richter (Greece)1, Naveed Sattar (UK)2, Yvo Smulders (The Netherlands)1, Monica Tiberi (Italy)1, H. Bart van der Worp (The Netherlands)6, Ineke van Dis (The Netherlands)4, W. M. Monique Verschuren (The Netherlands)1

2,189 citations


Authors

Showing all 46522 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Albert Hofman2672530321405
Guido Kroemer2361404246571
Eric B. Rimm196988147119
Scott M. Grundy187841231821
Jing Wang1844046202769
Tadamitsu Kishimoto1811067130860
John Hardy1771178171694
Marc G. Caron17367499802
Ramachandran S. Vasan1721100138108
Adrian L. Harris1701084120365
Douglas F. Easton165844113809
Zulfiqar A Bhutta1651231169329
Judah Folkman165499148611
Ralph A. DeFronzo160759132993
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

French Institute of Health and Medical Research
174.2K papers, 8.3M citations

94% related

Lund University
124.6K papers, 5M citations

93% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

93% related

University of Copenhagen
149.7K papers, 5.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022500
20217,763
20206,922
20196,057
20185,548