scispace - formally typeset
Search or ask a question
Institution

Nanjing University

EducationNanjing, China
About: Nanjing University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 85961 authors who have published 105504 publications receiving 2289036 citations. The organization is also known as: NJU & Nanking University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple bottom-up strategy was proposed to tune the band structure of graphitic carbon nitride (g-C3N4) to obtain a strong photooxidation capability.
Abstract: The electronic band structure of a semiconductor photocatalyst intrinsically controls its level of conduction band (CB) and valence band (VB) and, thus, influences its activity for different photocatalytic reactions. Here, we report a simple bottom-up strategy to rationally tune the band structure of graphitic carbon nitride (g-C3N4). By incorporating electron-deficient pyromellitic dianhydride (PMDA) monomer into the network of g-C3N4, the VB position can be largely decreased and, thus, gives a strong photooxidation capability. Consequently, the modified photocatalyst shows preferential activity for water oxidation over water reduction in comparison with g-C3N4. More strikingly, the active species involved in the photodegradation of methyl orange switches from photogenerated electrons to holes after band structure engineering. This work may provide guidance on designing efficient polymer photocatalysts with the desirable electronic structure for specific photoreactions.

413 citations

Journal ArticleDOI
TL;DR: In this article, a simple and scalable synthesis route is developed to prepare amorphous FeOOH quantum dots (QDs) and FeOH QDs/graphene hybrid nanosheets.
Abstract: Previous research on iron oxides/hydroxides has focused on the crystalline rather than the amorphous phase, despite that the latter could have superior electrochemical activity due to the disordered structure. In this work, a simple and scalable synthesis route is developed to prepare amorphous FeOOH quantum dots (QDs) and FeOOH QDs/graphene hybrid nanosheets. The hybrid nanosheets possess a unique heterostructure, comprising a continuous mesoporous FeOOH nanofilm tightly anchored on the graphene surface. The amorphous FeOOH/graphene hybrid nanosheets exhibit superior pseudocapacitive performance, which largely outperforms the crystalline iron oxides/hydroxides-based materials. In the voltage range between −0.8 and 0 V versus Ag/AgCl, the amorphous FeOOH/graphene composite electrode exhibits a large specific capacitance of about 365 F g−1, outstanding cycle performance (89.7% capacitance retention after 20 000 cycles), and excellent rate capability (189 F g−1 at a current density of 128 A g−1). When the lower cutoff voltage is extended to −1.0 and −1.25 V, the specific capacitance of the amorphous FeOOH/graphene composite electrode can be increased to 403 and 1243 F g−1, respectively, which, however, compromises the rate capability and cycle performance. This work brings new opportunities to design high-performance electrode materials for supercapacitors, especially for amorphous oxides/hydroxides-based materials.

412 citations

Posted Content
TL;DR: Experiments show that the proposed deep pairwise-supervised hashing method (DPSH), to perform simultaneous feature learning and hashcode learning for applications with pairwise labels, can outperform other methods to achieve the state-of-the-art performance in image retrieval applications.
Abstract: Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hash-code learning with deep neural networks, which have shown better performance than traditional hashing methods with hand-crafted features. Most of these deep hashing methods are supervised whose supervised information is given with triplet labels. For another common application scenario with pairwise labels, there have not existed methods for simultaneous feature learning and hash-code learning. In this paper, we propose a novel deep hashing method, called deep pairwise-supervised hashing(DPSH), to perform simultaneous feature learning and hash-code learning for applications with pairwise labels. Experiments on real datasets show that our DPSH method can outperform other methods to achieve the state-of-the-art performance in image retrieval applications.

412 citations

Journal ArticleDOI
Hua Wei1, Boqiang Gao1, Jie Ren1, Aimin Li1, Hu Yang1 
TL;DR: Aiming at the complicated composition of sludge and its treatment difficulty, the prospects and technical developments of coagulation/flocculation in sludge dewatering are discussed.

411 citations

Journal ArticleDOI
TL;DR: Investigation of chlorination effects on microbial antibiotic resistance in a drinking water treatment plant indicated that Proteobacteria were the main antibiotic resistant bacteria dominating in the drinking water and chlorine disinfection greatly affected microbial community structure, while prevalence of ARB and ARGs in chlorinated drinking water was highlighted.

411 citations


Authors

Showing all 86514 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Zhenan Bao169865106571
Gang Chen1673372149819
Peter G. Schultz15689389716
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Markku Kulmala142148785179
Jian Yang1421818111166
Wei Huang139241793522
Bin Liu138218187085
Jun Lu135152699767
Hui Li1352982105903
Lei Zhang135224099365
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

97% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

95% related

Fudan University
117.9K papers, 2.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023276
20221,089
20219,130
20208,684
20198,203