scispace - formally typeset
Search or ask a question

Showing papers by "Nanjing University published in 2011"


Journal ArticleDOI
TL;DR: In this paper, the topological semimetal, a three-dimensional phase of a magnetic solid, is described and it may be realized in a class of pyrochlore iridates based on calculations using the LDA+U$ method.
Abstract: We investigate novel phases that emerge from the interplay of electron correlations and strong spin-orbit interactions. We focus on describing the topological semimetal, a three-dimensional phase of a magnetic solid, and argue that it may be realized in a class of pyrochlore iridates (such as ${\mathrm{Y}}_{2}$Ir${}_{2}$O${}_{7}$) based on calculations using the $\text{LDA}+U$ method. This state is a three-dimensional analog of graphene with linearly dispersing excitations and provides a condensed-matter realization of Weyl fermions that obeys a two-component Dirac equation. It also exhibits remarkable topological properties manifested by surface states in the form of Fermi arcs, which are impossible to realize in purely two-dimensional band structures. For intermediate correlation strengths, we find this to be the ground state of the pyrochlore iridates, coexisting with noncollinear magnetic order. A narrow window of magnetic ``axion'' insulator may also be present. An applied magnetic field is found to induce a metallic ground state.

3,865 citations


Journal ArticleDOI
19 May 2011-ACS Nano
TL;DR: A facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source is proposed, which can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated.
Abstract: The electronic and chemical properties of graphene can be modulated by chemical doping foreign atoms and functional moieties. The general approach to the synthesis of nitrogen-doped graphene (NG), such as chemical vapor deposition (CVD) performed in gas phases, requires transitional metal catalysts which could contaminate the resultant products and thus affect their properties. In this paper, we propose a facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source. This approach can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated. Detailed X-ray photoelectron spectrum analysis of the resultant products shows that the atomic percentage of nitrogen in doped graphene samples can be adjusted up to 10.1%. Such a high doping level has not been reported previously. High-resolution N1s spectra reveal that the as-made NG mainly contai...

2,242 citations



Journal ArticleDOI
01 Dec 2011-Nature
TL;DR: Findings reveal that EGF induces β-catenin transactivation via a mechanism distinct from that induced by Wnt/Wingless and highlight the essential non-metabolic functions of PKM2 in EGFR-promoted β- catenintransactivation, cell proliferation and tumorigenesis.
Abstract: The embryonic pyruvate kinase M2 (PKM2) isoform is highly expressed in human cancer. In contrast to the established role of PKM2 in aerobic glycolysis or the Warburg effect, its non-metabolic functions remain elusive. Here we demonstrate, in human cancer cells, that epidermal growth factor receptor (EGFR) activation induces translocation of PKM2, but not PKM1, into the nucleus, where K433 of PKM2 binds to c-Src-phosphorylated Y333 of β-catenin. This interaction is required for both proteins to be recruited to the CCND1 promoter, leading to HDAC3 removal from the promoter, histone H3 acetylation and cyclin D1 expression. PKM2-dependent β-catenin transactivation is instrumental in EGFR-promoted tumour cell proliferation and brain tumour development. In addition, positive correlations have been identified between c-Src activity, β-catenin Y333 phosphorylation and PKM2 nuclear accumulation in human glioblastoma specimens. Furthermore, levels of β-catenin phosphorylation and nuclear PKM2 have been correlated with grades of glioma malignancy and prognosis. These findings reveal that EGF induces β-catenin transactivation via a mechanism distinct from that induced by Wnt/Wingless and highlight the essential non-metabolic functions of PKM2 in EGFR-promoted β-catenin transactivation, cell proliferation and tumorigenesis.

821 citations


Journal ArticleDOI
Peng-Fei Chen1
TL;DR: In this paper, a review on each stage of the CME phenomenon is presented, including their pre-eruption structure, their triggering mechanisms and the precursors indicating the initiation process, their acceleration and propagation.
Abstract: Coronal mass ejections (CMEs) are the largest-scale eruptive phenomenon in the solar system, expanding from active region-sized nonpotential magnetic structure to a much larger size. The bulk of plasma with a mass of ∼ 1011,1013 kg is hauled up all the way out to the interplanetary space with a typical velocity of several hundred or even more than 1000 km s−1, with a chance to impact our Earth, resulting in hazardous space weather conditions. They involve many other much smaller-sized solar eruptive phenomena, such as X-ray sigmoids, filament/prominence eruptions, solar flares, plasma heating and radiation, particle acceleration, EIT waves, EUV dimmings, Moreton waves, solar radio bursts, and so on. It is believed that, by shedding the accumulating magnetic energy and helicity, they complete the last link in the chain of the cycling of the solar magnetic field. In this review, I try to explicate our understanding on each stage of the fantastic phenomenon, including their pre-eruption structure, their triggering mechanisms and the precursors indicating the initiation process, their acceleration and propagation. Particular attention is paid to clarify some hot debates, e.g., whether magnetic reconnection is necessary for the eruption, whether there are two types of CMEs, how the CME frontal loop is formed, and whether halo CMEs are special.

679 citations


Journal ArticleDOI
TL;DR: An rht-type metal-organic framework prepared from M(2)(carboxylate)(4) (M = Cu, Co) paddlewheel clusters and a flexible C(3)-symmetric hexacarboxylates ligand with acylamide groups exhibits larger CO(2) uptake, an enhanced heat of adsorption, and higher selectivity toward CO(1)/N(2).
Abstract: An rht-type metal−organic framework (MOF) prepared from M2(carboxylate)4 (M = Cu, Co) paddlewheel clusters and a flexible C3-symmetric hexacarboxylate ligand with acylamide groups exhibits larger CO2 uptake, an enhanced heat of adsorption, and higher selectivity toward CO2/N2 in comparison with what was previously observed for an analogous MOF with alkyne groups.

676 citations


Journal ArticleDOI
Zhen-Zhong Lu1, Rui Zhang1, Yi-Zhi Li1, Zijian Guo1, He-Gen Zheng1 
TL;DR: The solvent molecules can be sensed by the changes of UV-vis spectra of the corresponding inclusion compounds, showing a new way of signal transduction as a new kind of sensor.
Abstract: A nanotubular metal-organic framework (MOF), {[(WS(4)Cu(4))I(2)(dptz)(3)]·DMF}(n) (dptz = 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine, DMF = N,N-dimethylformamide) for sensing small solvent molecules is presented. When accommodating different solvent molecules as guests, the resulting inclusion compounds exhibit different colors depending on the solvent guests, and more interestingly, the band gaps of these solvent-included complexes are in linear correlation with the polarity of the guest solvents. The solvent molecules can be sensed by the changes of UV-vis spectra of the corresponding inclusion compounds, showing a new way of signal transduction as a new kind of sensor. The sensing by such a MOF occurs within the channel-containing material rather than on the external surface.

641 citations


Journal ArticleDOI
TL;DR: The triple-band absorber is a promising candidate as absorbing elements in scientific and technical applications because of its multiband absorption, polarization insensitivity, and wide-angle response.
Abstract: We report the design, fabrication, and measurement of a microwave triple-band absorber. The compact single unit cell consists of three nested electric closed-ring resonators and a metallic ground plane separated by a dielectric layer. Simulation and experimental results show that the absorber has three distinctive absorption peaks at frequencies 4.06GHz, 6.73GHz, and 9.22GHz with the absorption rates of 0.99, 0.93, and 0.95, respectively. The absorber is valid to a wide range of incident angles for both transverse electric (TE) and transverse magnetic (TM) polarizations. The triple-band absorber is a promising candidate as absorbing elements in scientific and technical applications because of its multiband absorption, polarization insensitivity, and wide-angle response.

637 citations


Journal ArticleDOI
TL;DR: It is shown that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway (PPP), which suppresses glucose consumption, NADPH production and biosynthesis.
Abstract: Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen. This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation. However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway (PPP). Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells.

617 citations


Journal ArticleDOI
05 Aug 2011-Science
TL;DR: A metallic-silicon waveguide system in which the optical potential is modulated along the length of the waveguide such that nonreciprocal light propagation is obtained on a silicon photonic chip is designed and fabricated.
Abstract: Optical communications and computing require on-chip nonreciprocal light propagation to isolate and stabilize different chip-scale optical components. We have designed and fabricated a metallic-silicon waveguide system in which the optical potential is modulated along the length of the waveguide such that nonreciprocal light propagation is obtained on a silicon photonic chip. Nonreciprocal light transport and one-way photonic mode conversion are demonstrated at the wavelength of 1.55 micrometers in both simulations and experiments. Our system is compatible with conventional complementary metal-oxide-semiconductor processing, providing a way to chip-scale optical isolators for optical communications and computing.

615 citations


Journal ArticleDOI
TL;DR: Previous work on CT is reviewed, the evolution of CT is highlighted, important issues, methods, and applications of CT are identified, and the growing trend of CT research is presented.
Abstract: Combinatorial Testing (CT) can detect failures triggered by interactions of parameters in the Software Under Test (SUT) with a covering array test suite generated by some sampling mechanisms. It has been an active field of research in the last twenty years. This article aims to review previous work on CT, highlights the evolution of CT, and identifies important issues, methods, and applications of CT, with the goal of supporting and directing future practice and research in this area. First, we present the basic concepts and notations of CT. Second, we classify the research on CT into the following categories: modeling for CT, test suite generation, constraints, failure diagnosis, prioritization, metric, evaluation, testing procedure and the application of CT. For each of the categories, we survey the motivation, key issues, solutions, and the current state of research. Then, we review the contribution from different research groups, and present the growing trend of CT research. Finally, we recommend directions for future CT research, including: (1) modeling for CT, (2) improving the existing test suite generation algorithm, (3) improving analysis of testing result, (4) exploring the application of CT to different levels of testing and additional types of systems, (5) conducting more empirical studies to fully understand limitations and strengths of CT, and (6) combining CT with other testing techniques.

Journal ArticleDOI
TL;DR: In this article, a distributed control strategy based on improved dc bus signaling is proposed for a modular photovoltaic (PV) generation system with battery energy storage elements, which is composed of three modular dc/dc converters for PV arrays, two grid-connected dc/ac converters, and one DC/dc converter for battery charging/discharging and local loads, which are available of either gridconnected operation or islanding operation.
Abstract: Modular generation system, which consists of modular power conditioning converters, is an effective solution to integrate renewable energy sources with conventional utility grid to improve reliability and efficiency, especially for photovoltaic generation. A distributed control strategy based on improved dc bus signaling is proposed for a modular photovoltaic (PV) generation system with battery energy storage elements. In this paper, the modular PV generation system is composed of three modular dc/dc converters for PV arrays, two grid-connected dc/ac converters, and one dc/dc converter for battery charging/discharging and local loads, which is available of either grid-connected operation or islanding operation. By using the proposed control strategy, the operations of a modular PV generation system are categorized into four modes: islanding with battery discharging, grid-connected rectification, grid-connected inversion, and islanding with constant voltage (CV) generation. The power balance of the system under extreme conditions such as the islanding operation with a full-charged battery is taken into account in this control strategy. The dc bus voltage level is employed as an information carrier to distinguish different modes and determine mode switching. Control methods of modular dc/dc converters, battery converter, and grid-connected converter are addressed. An autonomous control method for modular dc/dc converters is proposed to realize smooth switching between CV operation and maximum power point tracking operation, which enables the dc bus voltage regulation capability of modular dc/dc converters. Seamless switching of a battery converter between charging and discharging and that of a grid-connected converter between rectification and inversion are ensured by the proposed control methods. Experiments verify the practical feasibility and the effectiveness of the proposed control strategies.

Journal ArticleDOI
TL;DR: In this paper, a stable photoelectrode with high incident photon conversion efficiency (IPCE) in seawater splitting under irradiation by visible light was reported, and the results indicated that modified BiVO4 had a photocurrent density of 2.16 mA cm−2 at 1.0 VRHE in natural seawater under AM 1.5G sunlight (1000 W m−2).
Abstract: Hydrogen is a very promising candidate as a future energy carrier. It is attractive to produce hydrogen from solar energy and seawater, the most abundant renewable energy source and the most abundant natural resource on the earth. To date, there is no report on a stable photoelectrode with a high incident photon conversion efficiency (IPCE) in seawater splitting under irradiation by visible light. Herein, we report an efficient and stable system for seawater splitting based on a multi-metal oxide BiVO4 after modification. The results indicated that modified BiVO4 had a photocurrent density of 2.16 mA cm−2 at 1.0 VRHE in natural seawater under AM 1.5G sunlight (1000 W m−2) and exhibited the highest IPCE at 1.0 VRHE in the visible light region of 440–480 nm among all known oxide photoanodes.

Journal ArticleDOI
Xin Zhao1, Lu Lv1, Bingcai Pan1, Weiming Zhang1, Shujuan Zhang1, Quanxing Zhang1 
TL;DR: Polymer-based nanocomposites (PNCs) have received increasing attention in both academia and industry as discussed by the authors, and they present outstanding mechanical properties and compatibility owing to their polymer matrix, the unique physical and chemical properties caused by the unusually large surface area to volume ratios and high interfacial reactivity of the nanofillers.

Journal ArticleDOI
TL;DR: The results suggest that anaerobically digested sugar beet tailings can be used as feedstock materials to produce high quality biochars, which could be used to reclaim phosphate, and the DSTC showed the highest phosphate removal ability.

Journal ArticleDOI
TL;DR: The results suggest that biochar converted from anaerobically digested sugar beet tailings is a promising alternative adsorbent, which can be used to reclaim phosphate from water or reduce phosphate leaching from fertilized soils.

Journal ArticleDOI
TL;DR: The utility of the sulphide-selective fluorescent probes for the selective detection of sulphides, and the capacity of the probes to monitor enzymatic H(2)S biogenesis and image free sulphide in living cells are shown.
Abstract: Aqueous sulphides, including hydrogen sulphide, have important roles in biological signalling and metabolic processes. Here we develop a selective sulphide-trapping strategy involving sulphide addition to an aldehyde; the resulting hemithioacetal undergoes a Michael addition with an adjacent unsaturated acrylate ester to form a thioacetal at neutral pH in aqueous solution. Employing this new strategy, two sulphide-selective fluorescent probes, SFP-1 and SFP-2, were synthesized on the basis of two different fluorophore templates. These probes exhibit an excellent fluorescence increase and an emission maximum shift (SFP-1) in response to Na(2)S and H(2)S in a high thiol background as found under physiological conditions. We show the utility of the probes for the selective detection of sulphides, and the capacity of our probes to monitor enzymatic H(2)S biogenesis and image free sulphide in living cells.

Journal ArticleDOI
01 Oct 2011-Brain
TL;DR: It is demonstrated for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.
Abstract: The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic–clonic seizures. * Abbreviations : AAL : automated anatomical labelling GTCS : generalized tonic–clonic seizures IGE : idiopathic generalized epilepsy

Journal ArticleDOI
TL;DR: The effect of TiO(2) and ZnO nanoparticles on wheat growth and soil enzyme activities under field conditions is investigated and the nanoparticles themselves or their dissolved ions were clearly toxic for the soil ecosystem.
Abstract: The properties of nanoparticles and their increased use have raised concerns about their possible harmful effects within the environment. Most studies on their effects have been in aqueous systems. Here we investigated the effect of TiO2 and ZnO nanoparticles on wheat growth and soil enzyme activities under field conditions. Both of the nanoparticles reduced the biomass of wheat. The TiO2 nanoparticles were retained in the soil for long periods and primarily adhered to cell walls of wheat. The ZnO nanoparticles dissolved in the soil, thereby enhancing the uptake of toxic Zn by wheat. The nanoparticles also induced significant changes in soil enzyme activities, which are bioindicators of soil quality and health. Soil protease, catalase, and peroxidase activities were inhibited in the presence of the nanoparticles; urease activity was unaffected. The nanoparticles themselves or their dissolved ions were clearly toxic for the soil ecosystem.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3034 moreInstitutions (179)
TL;DR: In this article, a search for squarks and gluinos in final states containing jets, missing transverse momentum and no electrons or muons is presented, and the data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider.

Journal ArticleDOI
TL;DR: This experimental demonstration of self-guiding electromagnetic edge states existing along the zigzag edge of a honeycomb magnetic photonic crystal allows for the unidirectional transport of electromagnetic energy without requiring an ancillary cladding layer.
Abstract: We present an experimental demonstration of self-guiding electromagnetic edge states existing along the zigzag edge of a honeycomb magnetic photonic crystal. These edge states are shown to possess unidirectional propagation characteristics that are robust against various types of defects and obstacles. In particular, they allow for the unidirectional transport of electromagnetic energy without requiring an ancillary cladding layer.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3104 moreInstitutions (190)
TL;DR: In this paper, the particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transversal momentum and the charged-particle multiplicity are measured.
Abstract: Measurements are presented from proton-proton collisions at centre-of-mass energies of root s = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo (MC) models, including a new AMBT1 pythia6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the MC models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with p(T) > 100 MeV, is measured to be 3.483 +/- 0.009 (stat) +/- 0.106 (syst) at root s = 0.9 TeV and 5.630 +/- 0.003 (stat) +/- 0.169 (syst) at root s = 7 TeV.

Journal ArticleDOI
TL;DR: In this article, the authors show that the South Tianshan Suture of the south Central Asian Orogenic Belt is equivalent to the whole part of the Chinese Tianhan belt, located to the south of Narat Fault and Main Tianhuan Shear Zone.
Abstract: The Chinese Tianshan belt is a major part of the southern Central Asian Orogenic Belt, extending westward to Kyrgyzstan and Kazakhstan. Its Paleozoic tectonic evolution, crucial for understanding the amalgamation of Central Asia, comprises two stages of subduction-collision. The first collisional stage built the Eo-Tianshan Mountains, before a Visean unconformity, in which all structures are verging north. It implied a southward subduction of the Central Tianshan Ocean beneath the Tarim ac-tive margin, that induced the Ordovician-Early Devonian Central Tianshan arc, to the south of which the South Tianshan back-arc basin opened. During the Late Devonian, the closure of this ocean led to a collision between Central Tianshan arc and the Kazakhstan-Yili-North Tianshan Block, and subsequently closure of the South Tianhan back-arc basin, producing two su-ture zones, namely the Central Tianshan and South Tianshan suture zones where ophiolitic melanges and HP metamorphic rocks were emplaced northward. The second stage included the Late Devonian-Carboniferous southward subduction of North Tianshan Ocean beneath the Eo-Tianshan active margin, underlined by the Yili-North Tianshan arc, leading to the collision between the Kazakhstan-Yili-NTS plate and an inferred Junggar Block at Late Carboniferous-Early Permian time. The North Tianshan Suture Zone underlines likely the last oceanic closure of Central Asia Orogenic Belt; all the oceanic domains were consumed before the Middle Permian. The amalgamated units were affected by a Permian major wrenching, dextral in the Tianshan. The correlation with the Kazakh and Kyrgyz Tianshan is clarified. The Kyrgyz South Tianshan is equivalent to the whole part of Chinese Tianshan (CTS and STS) located to the south of Narat Fault and Main Tianshan Shear Zone; the so-called Middle Tianshan thins out toward the east. The South Tianshan Suture of Kyrgyzstan correlates with the Central Tianshan Suture of Chinese Tianshan. The evolution of this southern domain remains similar from east (Gangou area) to west until the Talas-Ferghana Fault, which reflects the convergence history between the Kazakhstan and Tarim blocks.

Journal ArticleDOI
TL;DR: Different from nonreciprocity due to the nonlinear acoustic effect and broken time reversal symmetry, this new model leads to a one-way effect with higher efficiency, broader bandwidth, and much less power consumption, showing promising applications in various sound devices.
Abstract: Nonreciprocal wave propagation typically requires strong nonlinear materials to break time reversal symmetry. Here, we utilized a sonic-crystal-based acoustic diode that had broken spatial inversion symmetry and experimentally realized sound unidirectional transmission in this acoustic diode. These novel phenomena are attributed to different mode transitions as well as their associated different energy conversion efficiencies among different diffraction orders at two sides of the diode. This nonreciprocal sound transmission could be systematically controlled by simply mechanically rotating the square rods of the sonic crystal. Different from nonreciprocity due to the nonlinear acoustic effect and broken time reversal symmetry, this new model leads to a one-way effect with higher efficiency, broader bandwidth, and much less power consumption, showing promising applications in various sound devices.

Journal ArticleDOI
TL;DR: This study identified a serum microRNA expression profile that can serve as a novel diagnostic biomarker for GC detection and assess its clinical applications in monitoring disease progression.

Journal ArticleDOI
TL;DR: The polarization of the ferroelectric BiFeO3 subjected to different electrical boundary conditions by heterointerfaces was imaged with atomic resolution using a spherical aberration-corrected transceiver as discussed by the authors.
Abstract: The polarization of the ferroelectric BiFeO3 sub-jected to different electrical boundary conditions by heterointerfaces is imaged with atomic resolution using a spherical aberration-corrected trans...

Journal ArticleDOI
Xiaobin Hu1, Benzhi Liu1, Yuehua Deng1, Hongzhe Chen1, Si Luo1, Cheng Sun1, Po Yang1, Shaogui Yang1 
TL;DR: In this article, an inverse-spinel ferroferric oxide nanoparticles decorated multiwalled carbon nanotubes (Fe 3 O 4 /MWCNTs) was successfully prepared, and applied for the adsorption and degradation of trace artificial androgen 17α-methyltestosterone (MT) in the presence of H 2 O 2.
Abstract: A novel catalyst, inverse-spinel ferroferric oxide nanoparticles decorated multiwalled carbon nanotubes (Fe 3 O 4 /MWCNTs) was successfully prepared, and applied for the adsorption and degradation of trace artificial androgen 17α-methyltestosterone (MT) in the presence of H 2 O 2 . The regular growth of ferroferric oxide crystal on multiwalled carbon nanotubes was achieved by in situ oxidation of Fe 2+ in hot alkaline solution. The catalyst was characterized by BET, XRD, TEM, XPS and Raman spectroscopy. The effects of initial pH, catalyst loading, oxidant concentration and iron leaching on the degradation of MT were investigated. The Fe 3 O 4 /MWCNTs showed higher ability of adsorption and degradation efficiency of MT than bare Fe 3 O 4 in the batch degradation experiment. The degradation efficiencies increased with the initial pH decreasing in the wide pH range of 8.0–3.5. Further, the catalyst showed stable catalytic activity, fairly good mechanic stability and convenient recycling. Negligible iron leaching showed the reused Fe 3 O 4 /MWCNTs withstood the oxidation. The enhanced degradation efficiency of Fe 3 O 4 /MWCNTs may relate to the enrichment of trace MT molecules by MWCNTs in the vicinities of active sites.

Journal ArticleDOI
TL;DR: The doxorubicin/gelatin–GNS composite exhibited a high toxicity to kill MCF-7 cells and experienced a gelatin-mediated sustained release in vitro, which has the potential advantage of increasing the therapeutic efficacy.
Abstract: A green and facile method for the preparation of gelatin functionalized graphene nanosheets (gelatin–GNS) was reported by using gelatin as a reducing reagent. Meanwhile, the gelatin also played an important role as a functionalized reagent to prevent the aggregation of the graphene nanosheets. The obtained biocompatible gelatin–GNS exhibited excellent stability in water and various physiological fluids including, cellular growth media as well as serum which were critical prerequisites for biomedicine application of graphene. Cellular toxicity test suggested that the gelatin–GNS was nontoxic for MCF-7 cells, even at a high concentration of 200 μg mL−1. Furthermore, the anticancer drug was loaded onto the gelatin–GNS at a high loading capacity via physisorption for cellular imaging and drug delivery. The doxorubicin/gelatin–GNS composite exhibited a high toxicity to kill MCF-7 cells and experienced a gelatin-mediated sustained release in vitro, which has the potential advantage of increasing the therapeutic efficacy. Therefore, the gelatin–GNS could be selected as an ideal drug carrier to be applied in biomedicine studies.

Journal ArticleDOI
Shu Wang1, Xinbo Ruan1, Kai Yao1, Siew-Chong Tan, Yang Yang1, Zhihong Ye 
16 Dec 2011
TL;DR: In this paper, a flick-free electrolytic capacitor-less single-phase ac-dc driver for LED lighting is proposed, which consists of an electrolytic capacitive-less PFC converter and a bidirectional converter, which serves to absorb the ac component of the pulsating current of the PFC converters.
Abstract: The electrolytic capacitor is the key component that limits the operating lifetime of LED drivers. If an ac-dc LED driver with power factor correction (PFC) control is allowed to output a pulsating current for driving the LEDs, the electrolytic capacitor will no longer be required. However, this pulsating current will introduce light flicker that varies at twice the power line frequency. In this paper, a configuration of flicker-free electrolytic capacitor-less single-phase ac-dc driver for LED lighting is proposed. The configuration comprises an electrolytic capacitor-less PFC converter and a bidirectional converter, which serves to absorb the ac component of the pulsating current of the PFC converter, leaving only a dc component to drive the LEDs. The output filter capacitor of the bidirectional converter is intentionally designed to have a large voltage ripple, thus its capacitance can be greatly reduced. Consequently, film capacitors can be used instead of electrolytic capacitors, leading to the realization of a flicker-free ac-dc LED driver that has a long lifetime. The proposed solution is generally applicable to all single-phase PFC converters. A prototype with 48-V, 0.7-A output is constructed and tested. Experimental results are presented to verify the effectiveness of the flick-free electrolytic capacitor-less ac-dc LED driver.

Journal ArticleDOI
TL;DR: It is suggested that PLA2R is a major target antigen in Chinese idiopathic MN and that detection of anti-PLA2 R is a sensitive test for idiopATHic MN.
Abstract: The M-type phospholipase A2 receptor (PLA2R) is a target autoantigen in adult idiopathic membranous nephropathy (MN), but the prevalence of autoantibodies against PLA2R is unknown among Chinese patients with MN. Here, we measured anti-PLA2R antibody in the serum of 60 patients with idiopathic MN, 20 with lupus-associated MN, 16 with hepatitis B (HBV)-associated MN, and 10 with tumor-associated MN. Among patients with idiopathic MN, 49 (82%) had detectable anti-PLA2R autoantibodies using a Western blot assay; an assay with greater sensitivity detected very low titers of anti-PLA2R in 10 of the remaining 11 patients. Using the standard assay, we detected anti-PLA2R antibody in only 1 patient with lupus, 1 with HBV, and 3 with cancer, producing an overall specificity of 89% in this cohort limited to patients with secondary MN. The enhanced assay detected low titers of anti-PLA2R in only 2 additional samples of HBV-associated MN. In summary, these results suggest that PLA2R is a major target antigen in Chinese idiopathic MN and that detection of anti-PLA2R is a sensitive test for idiopathic MN.