scispace - formally typeset
Search or ask a question
Institution

Nanjing University

EducationNanjing, China
About: Nanjing University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 85961 authors who have published 105504 publications receiving 2289036 citations. The organization is also known as: NJU & Nanking University.


Papers
More filters
Journal ArticleDOI
TL;DR: The Third Pole (TP) is experiencing rapid warming and is currently in its warmest period in the past 2,000 years as mentioned in this paper, and the latest development in multidisciplinary TP research is reviewed in this paper.
Abstract: The Third Pole (TP) is experiencing rapid warming and is currently in its warmest period in the past 2,000 years. This paper reviews the latest development in multidisciplinary TP research ...

530 citations

Journal ArticleDOI
TL;DR: In this paper, a stable photoelectrode with high incident photon conversion efficiency (IPCE) in seawater splitting under irradiation by visible light was reported, and the results indicated that modified BiVO4 had a photocurrent density of 2.16 mA cm−2 at 1.0 VRHE in natural seawater under AM 1.5G sunlight (1000 W m−2).
Abstract: Hydrogen is a very promising candidate as a future energy carrier. It is attractive to produce hydrogen from solar energy and seawater, the most abundant renewable energy source and the most abundant natural resource on the earth. To date, there is no report on a stable photoelectrode with a high incident photon conversion efficiency (IPCE) in seawater splitting under irradiation by visible light. Herein, we report an efficient and stable system for seawater splitting based on a multi-metal oxide BiVO4 after modification. The results indicated that modified BiVO4 had a photocurrent density of 2.16 mA cm−2 at 1.0 VRHE in natural seawater under AM 1.5G sunlight (1000 W m−2) and exhibited the highest IPCE at 1.0 VRHE in the visible light region of 440–480 nm among all known oxide photoanodes.

529 citations

Journal ArticleDOI
TL;DR: It is shown that the haze during the COVID lockdown was driven by enhancements of secondary pollution, and that haze mitigation depends upon a coordinated and balanced strategy for controlling multiple pollutants.
Abstract: To control the spread of the 2019 novel coronavirus (COVID-19), China imposed nationwide restrictions on the movement of its population (lockdown) after the Chinese New Year of 2020, leading to large reductions in economic activities and associated emissions Despite such large decreases in primary pollution, there were nonetheless several periods of heavy haze pollution in eastern China, raising questions about the well-established relationship between human activities and air quality Here, using comprehensive measurements and modeling, we show that the haze during the COVID lockdown was driven by enhancements of secondary pollution In particular, large decreases in NOx emissions from transportation increased ozone and nighttime NO3 radical formation, and these increases in atmospheric oxidizing capacity in turn facilitated the formation of secondary particulate matter Our results, afforded by the tragic natural experiment of the COVID-19 pandemic, indicate that haze mitigation depends upon a coordinated and balanced strategy for controlling multiple pollutants

529 citations

Journal ArticleDOI
Yangfan Li1, Yi Li1, Yan Zhou, Yalou Shi1, Xiaodong Zhu1 
TL;DR: The results showed that the dynamic of coordination between urbanization and the environment showed a U-shaped curve, and both sub-systems evolved into a superior balance during rapid urbanization, indicating that socialurbanization and environmental control make the greatest contribution to the coupling system.

529 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years, and addressed the physical mechanisms regarding magneto-lectric coupling so that the backbone of this divergent discipline can be highlighted.
Abstract: Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism and electricity. The discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the new achievements since that time becomes imperative. In this review, following a concise outline of the basic knowledge of multiferroicity and magnetoelectricity, we summarize the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years. We consider not only single-phase multiferroics but also multiferroic heterostructures. We address the physical mechanisms regarding magnetoelectric coupling so that the backbone of this divergent discipline can be highlighted. A series of issues on lattice symmetry, magnetic ordering, ferroelectricity generation, electromagnon excitations, multiferroic domain structure and domain wall dynamics, and interfacial coupling in multiferroic heterostructures, will be revisited in an updated framework of physics. In addition, several emergent phenomena and related physics, including magnetic skyrmions and generic topological structures associated with magnetoelectricity will be discussed.

529 citations


Authors

Showing all 86514 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Zhenan Bao169865106571
Gang Chen1673372149819
Peter G. Schultz15689389716
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Markku Kulmala142148785179
Jian Yang1421818111166
Wei Huang139241793522
Bin Liu138218187085
Jun Lu135152699767
Hui Li1352982105903
Lei Zhang135224099365
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

97% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

95% related

Fudan University
117.9K papers, 2.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023276
20221,089
20219,130
20208,684
20198,203