scispace - formally typeset
Search or ask a question
Institution

Nanjing University

EducationNanjing, China
About: Nanjing University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 85961 authors who have published 105504 publications receiving 2289036 citations. The organization is also known as: NJU & Nanking University.


Papers
More filters
Journal ArticleDOI
01 Nov 2007
TL;DR: Case studies on three medical data sets and a successful application to microcalcification detection for breast cancer diagnosis show that undiagnosed samples are helpful in building CAD systems, and Co-Forest is able to enhance the performance of the hypothesis that is learned on only a small amount of diagnosed samples by utilizing the available undiognosed samples.
Abstract: In computer-aided diagnosis (CAD), machine learning techniques have been widely applied to learn a hypothesis from diagnosed samples to assist the medical experts in making a diagnosis. To learn a well-performed hypothesis, a large amount of diagnosed samples are required. Although the samples can be easily collected from routine medical examinations, it is usually impossible for medical experts to make a diagnosis for each of the collected samples. If a hypothesis could be learned in the presence of a large amount of undiagnosed samples, the heavy burden on the medical experts could be released. In this paper, a new semisupervised learning algorithm named Co-Forest is proposed. It extends the co-training paradigm by using a well-known ensemble method named Random Forest, which enables Co-Forest to estimate the labeling confidence of undiagnosed samples and easily produce the final hypothesis. Experiments on benchmark data sets verify the effectiveness of the proposed algorithm. Case studies on three medical data sets and a successful application to microcalcification detection for breast cancer diagnosis show that undiagnosed samples are helpful in building CAD systems, and Co-Forest is able to enhance the performance of the hypothesis that is learned on only a small amount of diagnosed samples by utilizing the available undiagnosed samples.

356 citations

Journal ArticleDOI
TL;DR: The effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing are evaluated and a conceptual overview of the key theoretical results are given.
Abstract: In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.

355 citations

Journal ArticleDOI
TL;DR: This tutorial review focuses on representative examples to describe the design, syntheses, sensing mechanisms, and applications of the conjugated oligopyrroles, which could be used as colorimetric or fluorescent ion probes, with the advantages of vivid colour and fluorescence changes, easy structural modification and functionalization, and tunable emission wavelengths.
Abstract: Metal ions and anions play important roles in many industrial and biochemical processes, and thus it is highly desired to detect them in the relevant systems. Small organic molecule based sensors for selective and sensitive detection of target ions show the advantages of low cost, high sensitivity and convenient implementation. In this area, pyrrole has incomparable advantages. It can be easily incorporated into linear and macrocyclic conjugated structures such as dipyrrins, porphyrins, and N-confused porphyrins, which may utilize the imino N and amino NH moieties for binding metal ions and anions, respectively. In this tutorial review, we focus on representative examples to describe the design, syntheses, sensing mechanisms, and applications of the conjugated oligopyrroles. These compounds could be used as colorimetric or fluorescent ion probes, with the advantages of vivid colour and fluorescence changes, easy structural modification and functionalization, and tunable emission wavelengths. Compared with normal porphyrins, simple di- and tripyrrins, as well as some porphyrinoids are more suitable for designing fluorescence “turn-on” metal probes, because they may exhibit flexible confirmations, and metal coordination will improve the rigidity, resulting in vivid fluorescence enhancement. It is noteworthy that the oligopyrrolic moieties may simultaneously act as the binding unit as well as the reporting moiety, which simplifies the design and syntheses of the probes.

355 citations

Journal ArticleDOI
TL;DR: An automatic pathological diagnosis procedure named Neural Ensemble-based Detection (NED) is proposed, which utilizes an artificial neural network ensemble to identify lung cancer cells in the images of the specimens of needle biopsies obtained from the bodies of the subjects to be diagnosed.

355 citations

Journal ArticleDOI
TL;DR: A metalens array made of gallium nitride (GaN) nanoantennas that can be used to capture light-field information and demonstrate a full-colour light- field camera devoid of chromatic aberration is described.
Abstract: A light-field camera captures both the intensity and the direction of incoming light1–5. This enables a user to refocus pictures and afterwards reconstruct information on the depth of field. Research on light-field imaging can be divided into two components: acquisition and rendering. Microlens arrays have been used for acquisition, but obtaining broadband achromatic images with no spherical aberration remains challenging. Here, we describe a metalens array made of gallium nitride (GaN) nanoantennas6 that can be used to capture light-field information and demonstrate a full-colour light-field camera devoid of chromatic aberration. The metalens array contains an array of 60 × 60 metalenses with diameters of 21.65 μm. The camera has a diffraction-limited resolution of 1.95 μm under white light illumination. The depth of every object in the scene can be reconstructed slice by slice from a series of rendered images with different depths of focus. Full-colour, achromatic light-field cameras could find applications in a variety of fields such as robotic vision, self-driving vehicles and virtual and augmented reality. A metalens array of GaN nanoantennas is used to make a full-colour achromatic light-field camera.

354 citations


Authors

Showing all 86514 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Zhenan Bao169865106571
Gang Chen1673372149819
Peter G. Schultz15689389716
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Markku Kulmala142148785179
Jian Yang1421818111166
Wei Huang139241793522
Bin Liu138218187085
Jun Lu135152699767
Hui Li1352982105903
Lei Zhang135224099365
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

97% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

95% related

Fudan University
117.9K papers, 2.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023276
20221,089
20219,130
20208,684
20198,203