scispace - formally typeset
Search or ask a question
Institution

National Chemical Laboratory

FacilityPune, Maharashtra, India
About: National Chemical Laboratory is a facility organization based out in Pune, Maharashtra, India. It is known for research contribution in the topics: Catalysis & Nanoparticle. The organization has 8891 authors who have published 14837 publications receiving 387600 citations.


Papers
More filters
Journal ArticleDOI
15 Jul 2015-eLife
TL;DR: Insight is provided into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga, and co-regulated with genes encoding the flagellar apparatus supporting the functional contribution of flagella to the evolution of invasion machinery.
Abstract: The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga.

252 citations

Journal ArticleDOI
TL;DR: In this article, the SiO2-Al2O3 catalyst gave exceptionally high yields of ca. 60% for organic solvent soluble extracted products with 95 ± 10% mass balance in the depolymerization of dealkaline lignin, bagasse and ORG lignins at 250 °C within 30 min.
Abstract: It is imperative to develop an efficient and environmentally benign pathway to valorize profusely available lignin, a component of nonedible lignocellulosic materials, into value-added aromatic monomers, which can be used as fuel additives and platform chemicals. To convert lignin, earlier studies used mineral bases (NaOH, CsOH) or supported metal catalysts (Pt, Ru, Pd, Ni on C, SiO2, Al2O3, etc.) under a hydrogen atmosphere, but these methods face several drawbacks such as corrosion, difficulty in catalyst recovery, sintering of metals, loss of activity, etc. Here we show that under an inert atmosphere various solid acid catalysts can efficiently convert six different types of lignins into value-added aromatic monomers. In particular, the SiO2–Al2O3 catalyst gave exceptionally high yields of ca. 60% for organic solvent soluble extracted products with 95 ± 10% mass balance in the depolymerization of dealkaline lignin, bagasse lignin, and ORG and EORG lignins at 250 °C within 30 min. GC, GC-MS, HPLC, LC-MS...

251 citations

Journal ArticleDOI
TL;DR: Fuel efficiency and mechanical stability: The polymer electrolyte membranes also have improved mechanical stability in H 2 /O 2 fuel cells.
Abstract: Fuel efficiency: Enhanced proton conductivity is obtained by the incorporation of single-walled carbon nanotubes prefunctionalized with sulfonic acid groups (S-SWCNTs) into a Nafion matrix (see scheme). The acid content of the CNT connects the hydrophobic regions of the membrane, thus providing a network for proton mobility. The polymer electrolyte membranes also have improved mechanical stability in H 2 /O 2 fuel cells.

251 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight recent developments in the wet chemical synthesis of metal oxide nanoparticles to provide great control over the quality of the obtained nanomaterials, including surface structures, phases, shapes, and sizes.
Abstract: Metal oxide nanoparticles are an important class of nanomaterials that have found several applications in science and technology. Through wet chemical synthesis, it is possible to achieve selective surface structures, phases, shapes, and sizes of metal oxide nanoparticles, leading to a set of desired properties. Wet chemical synthesis routes allow fine tuning of the reaction conditions (temperature, concentration of substrate, additives or surfactants, pH, etc.) to afford the desired nanomaterials. In this review article, we highlight recent developments in the wet chemical synthesis of metal oxide nanoparticles to provide great control over the quality of the obtained nanomaterials. The review critically evaluates the different wet chemical methods for scalable production of metal oxide nanoparticles to satisfy the growing industrial demand for nanomaterials. Special attention is paid to continuous flow synthesis of metal oxide nanoparticles.

246 citations

Journal ArticleDOI
TL;DR: In this article, the surface structure of the thin films of iron (Fe) doped titanium dioxide (FeO2) were modified by adding different concentrations of polyethylene glycol (PEG) into the TiO2 sol.

246 citations


Authors

Showing all 8913 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Tak W. Mak14880794871
John T. O'Brien12181963242
Clive Ballard11773661663
Yoshinori Tokura11785870258
John S. Mattick11636764315
Michael Dean10741963335
Ian G. McKeith10746851954
David J. Burn10044639120
Anil Kumar99212464825
Vikas Kumar8985939185
Detlef W. Bahnemann8851748826
Gautam R. Desiraju8845845301
Praveen Kumar88133935718
Network Information
Related Institutions (5)
Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

94% related

East China University of Science and Technology
36.4K papers, 763.1K citations

93% related

Beijing University of Chemical Technology
25.5K papers, 587.4K citations

92% related

DuPont
37.1K papers, 945.6K citations

89% related

National Presto Industries
12.2K papers, 512.9K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202238
2021482
2020454
2019471
2018498