scispace - formally typeset
Search or ask a question
Institution

Purdue University

EducationWest Lafayette, Indiana, United States
About: Purdue University is a education organization based out in West Lafayette, Indiana, United States. It is known for research contribution in the topics: Population & Context (language use). The organization has 73219 authors who have published 163563 publications receiving 5775236 citations. The organization is also known as: Purdue & Purdue-West Lafayette.


Papers
More filters
Journal ArticleDOI
TL;DR: A convolutional neural network is proposed to detect crack patches in each video frame, while the proposed data fusion scheme maintains the spatiotemporal coherence of cracks in videos, and the Naïve Bayes decision making discards false positives effectively.
Abstract: Regular inspection of nuclear power plant components is important to guarantee safe operations. However, current practice is time consuming, tedious, and subjective, which involves human technicians reviewing the inspection videos and identifying cracks on reactors. A few vision-based crack detection approaches have been developed for metallic surfaces, and they typically perform poorly when used for analyzing nuclear inspection videos. Detecting these cracks is a challenging task since they are tiny, and noisy patterns exist on the components’ surfaces. This study proposes a deep learning framework, based on a convolutional neural network (CNN) and a Naive Bayes data fusion scheme, called NB-CNN, to analyze individual video frames for crack detection while a novel data fusion scheme is proposed to aggregate the information extracted from each video frame to enhance the overall performance and robustness of the system. To this end, a CNN is proposed to detect crack patches in each video frame, while the proposed data fusion scheme maintains the spatiotemporal coherence of cracks in videos, and the Naive Bayes decision making discards false positives effectively. The proposed framework achieves a 98.3% hit rate against 0.1 false positives per frame that is significantly higher than state-of-the-art approaches as presented in this paper.

649 citations

Journal ArticleDOI
TL;DR: Enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Abstract: We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.

649 citations

Proceedings ArticleDOI
05 Nov 2014
TL;DR: A comprehensive, measurement-based analysis of the Heartbleed vulnerability's impact, including tracking the vulnerable population, monitoring patching behavior over time, assessing the impact on the HTTPS certificate ecosystem, and exposing real attacks that attempted to exploit the bug is performed.
Abstract: The Heartbleed vulnerability took the Internet by surprise in April 2014. The vulnerability, one of the most consequential since the advent of the commercial Internet, allowed attackers to remotely read protected memory from an estimated 24--55% of popular HTTPS sites. In this work, we perform a comprehensive, measurement-based analysis of the vulnerability's impact, including (1) tracking the vulnerable population, (2) monitoring patching behavior over time, (3) assessing the impact on the HTTPS certificate ecosystem, and (4) exposing real attacks that attempted to exploit the bug. Furthermore, we conduct a large-scale vulnerability notification experiment involving 150,000 hosts and observe a nearly 50% increase in patching by notified hosts. Drawing upon these analyses, we discuss what went well and what went poorly, in an effort to understand how the technical community can respond more effectively to such events in the future.

647 citations

Book
17 May 1993
TL;DR: Different types of biodegradable hydrogel systems, mechanisms and factors affecting their degradation, and their applications in drug delivery are described and their potential for future applications are described.
Abstract: Biodegradable hydrogels have been exploited in the controlled drug delivery area due to various advantages. This review describes different types of biodegradable hydrogel systems, mechanisms and factors affecting their degradation, and their applications in drug delivery. Biodradable hydrogels were classified according to their method of preparation, degradable moiety in the systems, and the mode of biodegradation. In addition, this review describes the advantages and limitations of these systems pertaining to their potential for future applications.

647 citations

Journal ArticleDOI
TL;DR: In a controlled release system, a drug, pesticide, or other bioactive agent is incorporated into a carrier, generally a polymeric material as mentioned in this paper, and the rate of release of the substance is determined by the properties of the polymer itself and is only weakly dependent on environmental factors.
Abstract: In a controlled release system a drug, pesticide, or other bio-active agent is incorporated into a carrier, generally a polymeric material. The rate of release of the substance is determined by the properties of the polymer itself and is only weakly dependent on environmental factors (such as the pH of bodily fluids). Controlled release systems are capable of delivering substances slowly and continuously for up to several years.

647 citations


Authors

Showing all 73693 results

NameH-indexPapersCitations
Yi Cui2201015199725
Yi Chen2174342293080
David Miller2032573204840
Hongjie Dai197570182579
Chris Sander178713233287
Richard A. Gibbs172889249708
Richard H. Friend1691182140032
Charles M. Lieber165521132811
Jian-Kang Zhu161550105551
David W. Johnson1602714140778
Robert Stone1601756167901
Tobin J. Marks1591621111604
Joseph Wang158128298799
Ed Diener153401186491
Wei Zheng1511929120209
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

98% related

Pennsylvania State University
196.8K papers, 8.3M citations

96% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023194
2022834
20217,499
20207,699
20197,294
20186,840