scispace - formally typeset
Search or ask a question
Institution

Purdue University

EducationWest Lafayette, Indiana, United States
About: Purdue University is a education organization based out in West Lafayette, Indiana, United States. It is known for research contribution in the topics: Population & Context (language use). The organization has 73219 authors who have published 163563 publications receiving 5775236 citations. The organization is also known as: Purdue & Purdue-West Lafayette.


Papers
More filters
Journal ArticleDOI
TL;DR: A high-order stochastic collocation approach is proposed, which takes advantage of an assumption of smoothness of the solution in random space to achieve fast convergence and requires only repetitive runs of an existing deterministic solver, similar to Monte Carlo methods.
Abstract: Recently there has been a growing interest in designing efficient methods for the solution of ordinary/partial differential equations with random inputs. To this end, stochastic Galerkin methods appear to be superior to other nonsampling methods and, in many cases, to several sampling methods. However, when the governing equations take complicated forms, numerical implementations of stochastic Galerkin methods can become nontrivial and care is needed to design robust and efficient solvers for the resulting equations. On the other hand, the traditional sampling methods, e.g., Monte Carlo methods, are straightforward to implement, but they do not offer convergence as fast as stochastic Galerkin methods. In this paper, a high-order stochastic collocation approach is proposed. Similar to stochastic Galerkin methods, the collocation methods take advantage of an assumption of smoothness of the solution in random space to achieve fast convergence. However, the numerical implementation of stochastic collocation is trivial, as it requires only repetitive runs of an existing deterministic solver, similar to Monte Carlo methods. The computational cost of the collocation methods depends on the choice of the collocation points, and we present several feasible constructions. One particular choice, based on sparse grids, depends weakly on the dimensionality of the random space and is more suitable for highly accurate computations of practical applications with large dimensional random inputs. Numerical examples are presented to demonstrate the accuracy and efficiency of the stochastic collocation methods.

1,637 citations

Journal ArticleDOI
TL;DR: The HiTOP promises to improve research and clinical practice by addressing the aforementioned shortcomings of traditional nosologies and provides an effective way to summarize and convey information on risk factors, etiology, pathophysiology, phenomenology, illness course, and treatment response.
Abstract: The reliability and validity of traditional taxonomies are limited by arbitrary boundaries between psychopathology and normality, often unclear boundaries between disorders, frequent disorder co-occurrence, heterogeneity within disorders, and diagnostic instability. These taxonomies went beyond evidence available on the structure of psychopathology and were shaped by a variety of other considerations, which may explain the aforementioned shortcomings. The Hierarchical Taxonomy Of Psychopathology (HiTOP) model has emerged as a research effort to address these problems. It constructs psychopathological syndromes and their components/subtypes based on the observed covariation of symptoms, grouping related symptoms together and thus reducing heterogeneity. It also combines co-occurring syndromes into spectra, thereby mapping out comorbidity. Moreover, it characterizes these phenomena dimensionally, which addresses boundary problems and diagnostic instability. Here, we review the development of the HiTOP and the relevant evidence. The new classification already covers most forms of psychopathology. Dimensional measures have been developed to assess many of the identified components, syndromes, and spectra. Several domains of this model are ready for clinical and research applications. The HiTOP promises to improve research and clinical practice by addressing the aforementioned shortcomings of traditional nosologies. It also provides an effective way to summarize and convey information on risk factors, etiology, pathophysiology, phenomenology, illness course, and treatment response. This can greatly improve the utility of the diagnosis of mental disorders. The new classification remains a work in progress. However, it is developing rapidly and is poised to advance mental health research and care significantly as the relevant science matures. (PsycINFO Database Record

1,635 citations

Journal ArticleDOI
TL;DR: This Review presents a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index met amaterials and anisotropic metammaterials, and discusses current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics.
Abstract: The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

1,634 citations

Journal ArticleDOI
TL;DR: A search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso for 13 months during 2011 and 2012, has yielded no evidence for dark matter interactions.
Abstract: We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso (LNGS) for 13 months during 2011 and 2012. XENON100 features an ultra-low electromagnetic background of (5.3\pm0.6)\times10^-3 events (kg day keVee)^-1 in the energy region of interest. A blind analysis of 224.6 live days \times 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the pre-defined nuclear recoil energy range of 6.6-30.5 keVnr are consistent with the background expectation of (1.0 \pm 0.2) events. A Profile Likelihood analysis using a 6.6-43.3 keVnr energy range sets the most stringent limit on the spin-independent elastic WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c^2, with a minimum of 2 \times 10^-45 cm^2 at 55 GeV/c^2 and 90% confidence level.

1,624 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine technology integration through the lens of the teacher as an agent of change: What are the necessary characteristics, or qualities, that enable teachers to leverage technology resources as meaningful pedagogical tools?
Abstract: Despite increases in computer access and technology training, technology is not being used to support the kinds of instruction believed to be most powerful. In this paper, we examine technology integration through the lens of the teacher as an agent of change: What are the necessary characteristics, or qualities, that enable teachers to leverage technology resources as meaningful pedagogical tools? To answer this question, we discuss the literature related to four variables of teacher change: knowledge, self-efficacy, pedagogical beliefs, and subject and school culture. Specifically, we propose that teachers’ mindsets must change to include the idea that “teaching is not effective without the appropriate use of information and communication technologies (ICT) resources to facilitate student learning.” Implications are discussed in terms of both teacher education and professional development programs. (Keywords: teacher change, teacher knowledge, teacher beliefs, technology integration)

1,618 citations


Authors

Showing all 73693 results

NameH-indexPapersCitations
Yi Cui2201015199725
Yi Chen2174342293080
David Miller2032573204840
Hongjie Dai197570182579
Chris Sander178713233287
Richard A. Gibbs172889249708
Richard H. Friend1691182140032
Charles M. Lieber165521132811
Jian-Kang Zhu161550105551
David W. Johnson1602714140778
Robert Stone1601756167901
Tobin J. Marks1591621111604
Joseph Wang158128298799
Ed Diener153401186491
Wei Zheng1511929120209
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

98% related

Pennsylvania State University
196.8K papers, 8.3M citations

96% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023194
2022834
20217,499
20207,699
20197,294
20186,840