scispace - formally typeset
Search or ask a question

Showing papers by "Purdue University published in 2012"


Journal ArticleDOI
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.

8,857 citations


Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations


Journal ArticleDOI
TL;DR: A search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso for 13 months during 2011 and 2012, has yielded no evidence for dark matter interactions.
Abstract: We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso (LNGS) for 13 months during 2011 and 2012. XENON100 features an ultra-low electromagnetic background of (5.3\pm0.6)\times10^-3 events (kg day keVee)^-1 in the energy region of interest. A blind analysis of 224.6 live days \times 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the pre-defined nuclear recoil energy range of 6.6-30.5 keVnr are consistent with the background expectation of (1.0 \pm 0.2) events. A Profile Likelihood analysis using a 6.6-43.3 keVnr energy range sets the most stringent limit on the spin-independent elastic WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c^2, with a minimum of 2 \times 10^-45 cm^2 at 55 GeV/c^2 and 90% confidence level.

1,624 citations


Journal ArticleDOI
TL;DR: This multiple case-study research was designed to revisit the question, ''How do the pedagogical beliefs and classroom technology practices of teachers, recognized for their technology uses, align?'' and suggest close alignment.
Abstract: Early studies indicated that teachers' enacted beliefs, particularly in terms of classroom technology practices, often did not align with their espoused beliefs. Researchers concluded this was due, at least in part, to a variety of external barriers that prevented teachers from using technology in ways that aligned more closely with their beliefs. However, many of these barriers (access, support, etc.) have since been eliminated in the majority of schools. This multiple case-study research was designed to revisit the question, ''How do the pedagogical beliefs and classroom technology practices of teachers, recognized for their technology uses, align?'' Twelve K-12 classroom teachers were purposefully selected based on their award-winning technology practices, supported by evidence from personal and/or classroom websites. Follow-up interviews were conducted to examine the correspondence between teachers' classroom practices and their pedagogical beliefs. Results suggest close alignment; that is student-centered beliefs undergirded student-centered practices (authenticity, student choice, collaboration). Moreover, teachers with student-centered beliefs tended to enact student-centered curricula despite technological, administrative, or assessment barriers. Teachers' own beliefs and attitudes about the relevance of technology to students' learning were perceived as having the biggest impact on their success. Additionally, most teachers indicated that internal factors (e.g., passion for technology, having a problem-solving mentality) and support from others (administrators and personal learning networks) played key roles in shaping their practices. Teachers noted that the strongest barriers preventing other teachers from using technology were their existing attitudes and beliefs toward technology, as well as their current levels of knowledge and skills. Recommendations are made for refocusing our professional development efforts on strategies for facilitating changes in teachers' attitudes and beliefs.

1,465 citations


Journal ArticleDOI
27 Jan 2012-Science
TL;DR: Unparalleled wavefront control in a broadband optical wavelength range from 1.0 to 1.9 micrometers is experimentally demonstrated using an extremely thin plasmonic layer consisting of an optical nanoantenna array that provides subwavelength phase manipulation on light propagating across the interface.
Abstract: The precise manipulation of a propagating wave using phase control is a fundamental building block of optical systems. The wavefront of a light beam propagating across an interface can be modified arbitrarily by introducing abrupt phase changes. We experimentally demonstrated unparalleled wavefront control in a broadband optical wavelength range from 1.0 to 1.9 micrometers. This is accomplished by using an extremely thin plasmonic layer (~λ/50) consisting of an optical nanoantenna array that provides subwavelength phase manipulation on light propagating across the interface. Anomalous light-bending phenomena, including negative angles of refraction and reflection, are observed in the operational wavelength range.

1,347 citations


Journal ArticleDOI
TL;DR: The pathway organization and the transcriptional/posttranscriptional regulation of the AAA biosynthetic network is summarized and the current limited knowledge of the subcellular compartmentalization and the metabolite transport involved in the plant AAA pathways is identified.
Abstract: L-tryptophan, L-phenylalanine, and L-tyrosine are aromatic amino acids (AAAs) that are used for the synthesis of proteins and that in plants also serve as precursors of numerous natural products, such as pigments, alkaloids, hormones, and cell wall components. All three AAAs are derived from the shikimate pathway, to which ≥30% of photosynthetically fixed carbon is directed in vascular plants. Because their biosynthetic pathways have been lost in animal lineages, the AAAs are essential components of the diets of humans, and the enzymes required for their synthesis have been targeted for the development of herbicides. This review highlights recent molecular identification of enzymes of the pathway and summarizes the pathway organization and the transcriptional/posttranscriptional regulation of the AAA biosynthetic network. It also identifies the current limited knowledge of the subcellular compartmentalization and the metabolite transport involved in the plant AAA pathways and discusses metabolic engineering efforts aimed at improving production of the AAA-derived plant natural products.

976 citations


Journal ArticleDOI
TL;DR: The fractional alternating-current Josephson effect produces a series of steps in the current-voltage characteristics of a superconducting junction driven at radiofrequencies as discussed by the authors, which is observed in a semiconductor-superconductor nanowire.
Abstract: The fractional alternating-current Josephson effect produces a series of steps in the current–voltage characteristics of a superconducting junction driven at radiofrequencies. This unusual phenomenon is now observed in a semiconductor–superconductor nanowire. What is more, a doubling in step size when a strong magnetic field is applied could be a possible signature of Majorana fermions, particles that are their own antiparticle.

946 citations


Journal ArticleDOI
TL;DR: Fragmentation Methods: A Route to Accurate Calculations on Large Systems Mark S. Gordon,* Dmitri G. Fedorov, Spencer R. Pruitt, and Lyudmila V. Slipchenko.
Abstract: Fragmentation Methods: A Route to Accurate Calculations on Large Systems Mark S. Gordon,* Dmitri G. Fedorov, Spencer R. Pruitt, and Lyudmila V. Slipchenko Department of Chemistry and Ames Laboratory, Iowa State University, Ames Iowa 50011, United States Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States

938 citations


Journal ArticleDOI
TL;DR: A systematic overview of the state of the art in energy and resource efficiency increasing methods and techniques in the domain of discrete part manufacturing, with attention for the effectiveness of the available options is provided in this paper.
Abstract: A B S T R A C T This paper aims to provide a systematic overview of the state of the art in energy and resource efficiency increasing methods and techniques in the domain of discrete part manufacturing, with attention for the effectiveness of the available options. For this purpose a structured approach, distinguishing different system scale levels, is applied: starting from a unit process focus, respectively the multi-machine, factory, multi-facility and supply chain levels are covered. Determined by the research contributions reported in literature, the de facto focus of the paper is mainly on energy related aspects of manufacturing. Significant opportunities for systematic efficiency improving measures are identified and summarized in this area. 2012 CIRP.

936 citations


Journal ArticleDOI
TL;DR: Understanding how small RNAs regulate gene expression will enable researchers to explore the role of smallRNAs in biotic and abiotic stress responses, and this review focuses on the regulatory roles of plant small RN as in the adaptive response to stresses.

898 citations


Proceedings ArticleDOI
29 Apr 2012
TL;DR: An early intervention solution for collegiate faculty called Course Signals, developed to allow instructors the opportunity to employ the power of learner analytics to provide real-time feedback to a student, is discussed.
Abstract: In this paper, an early intervention solution for collegiate faculty called Course Signals is discussed. Course Signals was developed to allow instructors the opportunity to employ the power of learner analytics to provide real-time feedback to a student. Course Signals relies not only on grades to predict students' performance, but also demographic characteristics, past academic history, and students' effort as measured by interaction with Blackboard Vista, Purdue's learning management system. The outcome is delivered to the students via a personalized email from the faculty member to each student, as well as a specific color on a stoplight -- traffic signal -- to indicate how each student is doing. The system itself is explained in detail, along with retention and performance outcomes realized since its implementation. In addition, faculty and student perceptions will be shared.

Journal ArticleDOI
TL;DR: This work presents atomic-scale images and electronic characteristics of these atomically precise devices and the impact of strong vertical and lateral confinement on electron transport and discusses the opportunities ahead for atomic- scale quantum computing architectures.
Abstract: The ability to control matter at the atomic scale and build devices with atomic precision is central to nanotechnology. The scanning tunnelling microscope can manipulate individual atoms and molecules on surfaces, but the manipulation of silicon to make atomic-scale logic circuits has been hampered by the covalent nature of its bonds. Resist-based strategies have allowed the formation of atomic-scale structures on silicon surfaces, but the fabrication of working devices-such as transistors with extremely short gate lengths, spin-based quantum computers and solitary dopant optoelectronic devices-requires the ability to position individual atoms in a silicon crystal with atomic precision. Here, we use a combination of scanning tunnelling microscopy and hydrogen-resist lithography to demonstrate a single-atom transistor in which an individual phosphorus dopant atom has been deterministically placed within an epitaxial silicon device architecture with a spatial accuracy of one lattice site. The transistor operates at liquid helium temperatures, and millikelvin electron transport measurements confirm the presence of discrete quantum levels in the energy spectrum of the phosphorus atom. We find a charging energy that is close to the bulk value, previously only observed by optical spectroscopy.

Journal ArticleDOI
29 Mar 2012
TL;DR: In this article, the authors reported results from searches for the standard model Higgs boson in proton-proton collisions at square root(s) = 7 TeV in five decay modes: gamma pair, b-quark pair, tau lepton pair, W pair, and Z pair.
Abstract: Combined results are reported from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s)=7 TeV in five Higgs boson decay modes: gamma pair, b-quark pair, tau lepton pair, W pair, and Z pair. The explored Higgs boson mass range is 110-600 GeV. The analysed data correspond to an integrated luminosity of 4.6-4.8 inverse femtobarns. The expected excluded mass range in the absence of the standard model Higgs boson is 118-543 GeV at 95% CL. The observed results exclude the standard model Higgs boson in the mass range 127-600 GeV at 95% CL, and in the mass range 129-525 GeV at 99% CL. An excess of events above the expected standard model background is observed at the low end of the explored mass range making the observed limits weaker than expected in the absence of a signal. The largest excess, with a local significance of 3.1 sigma, is observed for a Higgs boson mass hypothesis of 124 GeV. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-600 (110-145) GeV is estimated to be 1.5 sigma (2.1 sigma). More data are required to ascertain the origin of this excess.

Journal ArticleDOI
13 Apr 2012-Science
TL;DR: An optical topological transition in strongly anisotropic metamaterials is uncovered that results in a dramatic increase in the photon density of states—an effect that can be used to engineer this interaction.
Abstract: Light-matter interactions can be controlled by manipulating the photonic environment. We uncovered an optical topological transition in strongly anisotropic metamaterials that results in a dramatic increase in the photon density of states-an effect that can be used to engineer this interaction. We describe a transition in the topology of the iso-frequency surface from a closed ellipsoid to an open hyperboloid by use of artificially nanostructured metamaterials. We show that this topological transition manifests itself in increased rates of spontaneous emission of emitters positioned near the metamaterial. Altering the topology of the iso-frequency surface by using metamaterials provides a fundamentally new route to manipulating light-matter interactions.

Journal ArticleDOI
TL;DR: In this paper, the authors review the factors and processes that are known to influence the hydrogen-isotopic compositions of lipids from photosynthesizing organisms, and provide a framework for interpreting their D/H ratios from ancient sediments and identify future research opportunities.
Abstract: Hydrogen-isotopic abundances of lipid biomarkers are emerging as important proxies in the study of ancient environments and ecosystems. A decade ago, pioneering studies made use of new analytical methods and demonstrated that the hydrogen-isotopic composition of individual lipids from aquatic and terrestrial organisms can be related to the composition of their growth (i.e., environmental) water. Subsequently, compound-specific deuterium/hydrogen (D/H) ratios of sedimentary biomarkers have been increasingly used as paleohydrological proxies over a range of geological timescales. Isotopic fractionation observed between hydrogen in environmental water and hydrogen in lipids, however, is sensitive to biochemical, physiological, and environmental influences on the composition of hydrogen available for biosynthesis in cells. Here we review the factors and processes that are known to influence the hydrogen-isotopic compositions of lipids-especially n-alkanes-from photosynthesizing organisms, and we provide a framework for interpreting their D/H ratios from ancient sediments and identify future research opportunities.

Journal ArticleDOI
12 Sep 2012-ACS Nano
TL;DR: The performance limit of short channel MoS(2) transistors is dominated by the large contact resistance from the Schottky barrier between Ni and MoS (2) interface, where a fully transparent contact is needed to achieve a high-performance short channel device.
Abstract: In this article, we investigate electrical transport properties in ultrathin body (UTB) MoS2 two-dimensional (2D) crystals with channel lengths ranging from 2 μm down to 50 nm. We compare the short channel behavior of sets of MOSFETs with various channel thickness, and reveal the superior immunity to short channel effects of MoS2 transistors. We observe no obvious short channel effects on the device with 100 nm channel length (Lch) fabricated on a 5 nm thick MoS2 2D crystal even when using 300 nm thick SiO2 as gate dielectric, and has a current on/off ratio up to ∼109. We also observe the on-current saturation at short channel devices with continuous scaling due to the carrier velocity saturation. Also, we reveal the performance limit of short channel MoS2 transistors is dominated by the large contact resistance from the Schottky barrier between Ni and MoS2 interface, where a fully transparent contact is needed to achieve a high-performance short channel device.

Journal ArticleDOI
TL;DR: The BiVO(4)/FeOOH photoanode exhibitied significantly improved photocurrent and stability for photo-oxidation of water, which is one of the best among all oxide-based phoatoanode systems reported to date, and shows an outstanding performance in the low bias region.
Abstract: BiVO(4) films were prepared by a simple electrodeposition and annealing procedure and studied as oxygen evolving photoanodes for application in a water splitting photoelectrochemical cell. The resulting BiVO(4) electrodes maintained considerable photocurrent for photo-oxidation of sulfite, but generated significantly reduced photocurrent for photo-oxidation of water to oxygen, also decaying over time, suggesting that the photoelectrochemical performance of BiVO(4) for water oxidation is mainly limited by its poor catalytic ablity to oxidize water. In order to improve the water oxidation kinetics of the BiVO(4) electrode, a layer of FeOOH was placed on the BiVO(4) surface as an oxygen evolution catalyst using a new photodeposition route. The resulting BiVO(4)/FeOOH photoanode exhibitied significantly improved photocurrent and stability for photo-oxidation of water, which is one of the best among all oxide-based phoatoanode systems reported to date. In particular, the BiVO(4)/FeOOH photoanode showed an outstanding performance in the low bias region (i.e., E < 0.8 V vs RHE), which is critical in determining the overall operating current density when assembling a complete p-n photoelectrochemical diode cell. The photocurrent-to-O(2) conversion efficiency of the BiVO(4)/FeOOH photoanode is ca. 96%, confirming that the photogenerated holes in the BiVO(4)/FeOOH photoanode are indeed excusively used for O(2) evolution.

Journal ArticleDOI
03 Jan 2012-PLOS ONE
TL;DR: The results demonstrate that bees are exposed to neonicotinoid compounds and several other agricultural pesticides in several ways throughout the foraging period, and clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season.
Abstract: Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments.

Proceedings ArticleDOI
10 Apr 2012
TL;DR: Bundles are proposed, a new accounting presentation of app I/O energy, which helps the developer to quickly understand and optimize the energy drain of her app.
Abstract: Where is the energy spent inside my app? Despite the immense popularity of smartphones and the fact that energy is the most crucial aspect in smartphone programming, the answer to the above question remains elusive. This paper first presents eprof, the first fine-grained energy profiler for smartphone apps. Compared to profiling the runtime of applications running on conventional computers, profiling energy consumption of applications running on smartphones faces a unique challenge, asynchronous power behavior, where the effect on a component's power state due to a program entity lasts beyond the end of that program entity. We present the design, implementation and evaluation of eprof on two mobile OSes, Android and Windows Mobile.We then present an in-depth case study, the first of its kind, of six popular smartphones apps (including Angry-Birds, Facebook and Browser). Eprof sheds lights on internal energy dissipation of these apps and exposes surprising findings like 65%-75% of energy in free apps is spent in third-party advertisement modules. Eprof also reveals several "wakelock bugs", a family of "energy bugs" in smartphone apps, and effectively pinpoints their location in the source code. The case study highlights the fact that most of the energy in smartphone apps is spent in I/O, and I/O events are clustered, often due to a few routines. Thismotivates us to propose bundles, a new accounting presentation of app I/O energy, which helps the developer to quickly understand and optimize the energy drain of her app. Using the bundle presentation, we reduced the energy consumption of four apps by 20% to 65%.

Journal ArticleDOI
01 Apr 2012
TL;DR: PuReMD is presented, which extends current spatio-temporal simulation capability for reactive atomistic systems by over an order of magnitude and incorporates efficient dynamic data structures, algorithmic optimizations, and effective solvers to deliver low per-time-step simulation time, with a small memory footprint.
Abstract: Molecular dynamics modeling has provided a powerful tool for simulating and understanding diverse systems - ranging from materials processes to biophysical phenomena. Parallel formulations of these methods have been shown to be among the most scalable scientific computing applications. Many instances of this class of methods rely on a static bond structure for molecules, rendering them infeasible for reactive systems. Recent work on reactive force fields has resulted in the development of ReaxFF, a novel bond order potential that bridges quantum-scale and classical MD approaches by explicitly modeling bond activity (reactions) and charge equilibration. These aspects of ReaxFF pose significant challenges from a computational standpoint, both in sequential and parallel contexts. Evolving bond structure requires efficient dynamic data structures. Minimizing electrostatic energy through charge equilibration requires the solution of a large sparse linear system with a shielded electrostatic kernel at each sub-femtosecond long time-step. In this context, reaching spatio-temporal scales of tens of nanometers and nanoseconds, where phenomena of interest can be observed, poses significant challenges. In this paper, we present the design and implementation details of the Purdue Reactive Molecular Dynamics code, PuReMD. PuReMD has been demonstrated to be highly efficient (in terms of processor performance) and scalable. It extends current spatio-temporal simulation capability for reactive atomistic systems by over an order of magnitude. It incorporates efficient dynamic data structures, algorithmic optimizations, and effective solvers to deliver low per-time-step simulation time, with a small memory footprint. PuReMD is comprehensively validated for performance and accuracy on up to 3375 cores on a commodity cluster (Hera at LLNL-OCF). Potential performance bottlenecks to scalability beyond our experiments have also been analyzed. PuReMD is available over the public domain and has been used to model diverse systems, ranging from strain relaxation in Si-Ge nanobars, water-silica surface interaction, and oxidative stress in lipid bilayers (bio-membranes).

Journal ArticleDOI
TL;DR: This first demonstration of CNT transistors with channel lengths down to 9 nm shows substantially better scaling behavior than theoretically expected and should ignite exciting new research into improving the purity and placement of nanotubes, as well as optimizing CNT transistor structure and integration.
Abstract: Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal-CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.

Journal ArticleDOI
27 Jan 2012-Science
TL;DR: The device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input.
Abstract: A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing

Journal ArticleDOI
TL;DR: It is shown that various approaches to data collection affect the results and comparability of adoption studies, and environmental awareness and farmer attitudes have been inconsistently used and measured across the literature.

Journal ArticleDOI
TL;DR: Low impact development (LID) is a land development strategy for managing stormwater at the source with decentralized micro-scale control measures as discussed by the authors, which has been successfully used to manage stormwater runoff, improve water quality, and protect the environment.
Abstract: Low impact development (LID) is a land development strategy for managing stormwater at the source with decentralized micro-scale control measures. Since the emergence of LID practices, they have been successfully used to manage stormwater runoff, improve water quality, and protect the environment. However, discussions still surround the effectiveness of many of these practices, resulting in a reluctance to widely adopt them. This paper highlights evidence in the literature regarding the beneficial uses of LID practices. A discussion of how LID practices are represented in hydrologic/water quality models is also provided using illustrative examples of three computational models developed with algorithms and modules to support widespread adoption of LID practices. Finally, the paper suggests directions for future research opportunities.

Journal ArticleDOI
08 Jun 2012-Science
TL;DR: Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance, one such example is found in the hypermineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans.
Abstract: Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hypermineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one species, Odontodactylus scyllarus, exhibit an impressive set of characteristics adapted for surviving high-velocity impacts on the heavily mineralized prey on which they feed. Consisting of a multiphase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines of defense against catastrophic failure during repetitive high-energy loading events.

Journal ArticleDOI
TL;DR: In this article, the excitation of surface-plasmon-polaritons on titanium nitride thin films was demonstrated and the performance of various plasmonic and metamaterial structures with the material as the plammonic component was discussed.
Abstract: The search for alternative plasmonic materials with improved optical properties, easier fabrication and integration capabilities over those of the traditional materials such as silver and gold could ultimately lead to real-life applications for plasmonics and metamaterials. In this work, we show that titanium nitride could perform as an alternative plasmonic material in the visible and near-infrared regions. We demonstrate the excitation of surface-plasmon-polaritons on titanium nitride thin films and discuss the performance of various plasmonic and metamaterial structures with titanium nitride as the plasmonic component. We also show that titanium nitride could provide performance that is comparable to that of gold for plasmonic applications and can significantly outperform gold and silver for transformation-optics and some metamaterial applications in the visible and near-infrared regions.

Journal ArticleDOI
10 Feb 2012-Science
TL;DR: In this paper, the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states were reported, where each TAL repeat comprises two helices connected by a short RVD-containing loop.
Abstract: TAL (transcription activator–like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

Journal ArticleDOI
TL;DR: In this article, the performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at the LHC in 2010.
Abstract: The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta)<2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.

Journal ArticleDOI
TL;DR: It is shown that matching sequences that are no longer able to elicit defense, still guide the CRISPR/Cas acquisition machinery to foreign DNA, thus making the spacer acquisition process adaptive and leading to restoration of CRISpr/Cas-mediated protection.
Abstract: The clustered regularly interspaced short palindromic repeats (CRISPR) system protects prokaryotes from foreign DNA. Here, bacteriophage DNA containing mutations that can circumvent this response are shown to be incorporated into the CRISPR locus, allowing bacteria to remember previous infections in an adaptive manner.

Journal ArticleDOI
TL;DR: A sustained, coordinated, and collaborative research program that was put in place shortly after the 1993 Fusarium head blight epidemic is summarized, a program intended to quickly lead to improved management strategies and outreach implementation and serves as a model to deal with other emerging plant disease threats.
Abstract: Wheat and barley are critical food and feed crops around the world. Wheat is grown on more land area worldwide than any other crop. In the United States, production of wheat and barley contributes to domestic food and feed use, and contributes to the export market and balance of trade. Fifteen years ago, Plant Disease published a feature article titled “Scab of wheat and barley: A re-emerging disease of devastating impact”. That article described the series of severe Fusarium head blight (FHB) epidemics that occurred in the United States and Canada, primarily from 1991 through 1996, with emphasis on the unparalleled economic and sociological impacts caused by the 1993 FHB epidemic in spring grains in the Northern Great Plains region. Earlier publications had dealt with the scope and damage caused by this disease in the United States, Canada, Europe, and China. Reviews published after 1997 further described this disease and its impact on North American grain production in the 1990s. This article r...