scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Thin film. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.
Topics: Laser, Thin film, Hydrogen, Combustion, Silicon


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 3D frequency-domain EM modeling code has been implemented for helicopter electromagnetic (HEM) simulations, where a vector Helmholtz equation for the electric fields is employed to avoid convergence problems associated with the first-order Maxwell's equations when air is present.
Abstract: A 3D frequency-domain EM modelling code has been implemented for helicopter electromagnetic (HEM) simulations. A vector Helmholtz equation for the electric fields is employed to avoid convergence problems associated with the first-order Maxwell's equations when air is present. Additional stability is introduced by formulating the problem in terms of the scattered electric fields. With this formulation the impressed dipole source is replaced with an equivalent source, which for the airborne configuration possesses a smoother spatial dependence and is easier to model. In order to compute this equivalent source, a primary field arising from dipole sources of either a whole space or a layered half-space must be calculated at locations where the conductivity is different from that of the background. The Helmholtz equation is approximated using finite differences on a staggered grid. After finite-differencing, a complex-symmetric matrix system of equations is assembled and preconditioned using Jacobi scaling before it is solved using the quasi-minimum residual (QMR) method. The modelling code has been compared with other 1D and 3D numerical models and is found to produce results in good agreement. We have used the solution to simulate novel HEM responses that are computationally intractable using integral equation (IE) solutions. These simulations include a 2D conductor residing at a fault contact with and without topography. Our simulations show that the quadrature response is a very good indicator of the faulted background, while the in-phase response indicates the presence of the conductor. However when interpreting the in-phase response, it is possible erroneously to infer a dipping conductor due to the contribution of the faulted background.

301 citations

Journal ArticleDOI
TL;DR: This review investigates the effect of faults on the operation of PV arrays and identifies limitations to existing detection and mitigation methods and a survey of state-of-the-art fault Detection and mitigation technologies and commercially available products is presented.
Abstract: Three major catastrophic failures in photovoltaic (PV) arrays are ground faults, line-to-line faults, and arc faults. Although there have not been many such failures, recent fire events on April 5, 2009, in Bakersfield, CA, USA, and on April 16, 2011, in Mount Holly, NC, USA, suggest the need for improvements in present fault detection and mitigation techniques, as well as amendments to existing codes and standards to avoid such accidents. This review investigates the effect of faults on the operation of PV arrays and identifies limitations to existing detection and mitigation methods. A survey of state-of-the-art fault detection and mitigation technologies and commercially available products is also presented.

301 citations

Proceedings ArticleDOI
19 May 2002
TL;DR: In this paper, the authors define observed degradation in field-aged photovoltaic modules, including degradation of packaging materials, adhesional loss, degradation of interconnects, degradation due to moisture intrusion, and semiconductor device degradation, and suggest that the onset and progression of degradation need to be studied to gain a more comprehensive understanding of module degradation rates and module failures.
Abstract: Degradation leading to failure in photovoltaic modules follows a progression that is dependent on multiple factors, some of which interact causing degradation that is difficult to simulate in the lab. This paper defines observed degradation in field-aged modules, including degradation of packaging materials, adhesional loss, degradation of interconnects, degradation due to moisture intrusion, and semiconductor device degradation. Additionally, this paper suggests that the onset and progression of degradation need to be studied to gain a more comprehensive understanding of module degradation rates and module failures.

301 citations

Journal ArticleDOI
TL;DR: Two parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform, and just as stable as Householder QR are presented.
Abstract: We present parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform and just as stable as Householder QR. We prove optimality by deriving new lower bounds for the number of multiplications done by “non-Strassen-like” QR, and using these in known communication lower bounds that are proportional to the number of multiplications. We not only show that our QR algorithms attain these lower bounds (up to polylogarithmic factors), but that existing LAPACK and ScaLAPACK algorithms perform asymptotically more communication. We derive analogous communication lower bounds for LU factorization and point out recent LU algorithms in the literature that attain at least some of these lower bounds. The sequential and parallel QR algorithms for tall and skinny matrices lead to significant speedups in practice over some of the existing algorithms, including LAPACK and ScaLAPACK, for example, up to 6.7 times over ScaLAPACK. A performance model for the parallel algorithm for general rectangular matrices predicts significant speedups over ScaLAPACK.

301 citations

Journal ArticleDOI
TL;DR: In this paper, the terminology for oxide charges developed in 1979 was updated to include near-interfacial oxide traps that communicate with the underlying Si and that these defects collectively be called border traps.
Abstract: The author recommends that the terminology for oxide charges developed in 1979 be updated to include near-interfacial oxide traps that communicate with the underlying Si and that these defects collectively be called border traps. Justification for this nomenclature is presented and defining features of border traps are discussed. Border traps play an important role in determining low-frequency (1/f) noise levels in metal-oxide-semiconductor (MOS) transistors and also appear to have been observed in recent spin-dependent recombination studies on irradiated devices at microwave frequencies. This terminology is intended to add focus to discussions of defect type and location in MOS structures. >

301 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514