scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Thin film. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.
Topics: Laser, Thin film, Hydrogen, Combustion, Silicon


Papers
More filters
Journal ArticleDOI
TL;DR: The phase gradient autofocus technique for phase error correction of spotlight mode synthetic aperture radar (SAR) imagery is examined carefully in the context of four fundamental signal processing steps that constitute the algorithm.
Abstract: The phase gradient autofocus (PGA) technique for phase error correction of spotlight mode synthetic aperture radar (SAR) imagery is examined carefully in the context of four fundamental signal processing steps that constitute the algorithm. We demonstrate that excellent results over a wide variety of scene content, and phase error function structure are obtained if and only if all of these steps are included in the processing. Finally, we show that the computational demands of the fun PGA algorithm do not represent a large fraction of the total image formation problem, when mid to large size images are involved. >

1,030 citations

Journal ArticleDOI
TL;DR: Physical mechanisms responsible for nondestructive single-event effects in digital microelectronics are reviewed, concentrating on silicon MOS devices and integrated circuits as discussed by the authors, and the impact of technology trends on single event susceptibility and future areas of concern are explored.
Abstract: Physical mechanisms responsible for nondestructive single-event effects in digital microelectronics are reviewed, concentrating on silicon MOS devices and integrated circuits. A brief historical overview of single-event effects in space and terrestrial systems is given, and upset mechanisms in dynamic random access memories, static random access memories, and combinational logic are detailed. Techniques for mitigating single-event upset are described, as well as methods for predicting device and circuit single-event response using computer simulations. The impact of technology trends on single-event susceptibility and future areas of concern are explored.

1,028 citations

Book
01 Jan 1989
TL;DR: In this article, Hughes et al. present a survey of the effects of radiation on MOS devices and circuits, including hardening technology, process-induced radiation effects, and interface traps.
Abstract: Historical Perspective (H. Hughes). Electron--Hole Generation, Transport, and Trapping in SiO2 (F. McLean, et al.). Radiation--Induced Interface Traps (P. Winokur). Radiation Effects on MOS Devices and Circuits (P. Dressendorfer). Radiation--Hardening Technology (P. Dressendorfer). Process--Induced Radiation Effects (T. Ma). Source Considerations and Testing Techniques (K. Kerris). Transient--Ionization and Single--Event Phenomena (S. Kerns). Index.

1,026 citations

Book ChapterDOI
TL;DR: The solar wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced Composition Explorer (ACE) as discussed by the authors, which provides the context for elemental and isotopic composition measurements made on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation.
Abstract: The Solar Wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced Composition Explorer (ACE). These observations provide the context for elemental and isotopic composition measurements made on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation. They also provide an ideal data set for both heliospheric and magnetospheric multi-spacecraft studies where they can be used in conjunction with other, simultaneous observations from spacecraft such as Ulysses. The SWEPAM observations are made simultaneously with independent electron and ion instruments. In order to save costs for the ACE project, we recycled the flight spares from the joint NASA/ESA Ulysses mission. Both instruments have undergone selective refurbishment as well as modernization and modifications required to meet the ACE mission and spacecraft accommodation requirements. Both incorporate electrostatic analyzers whose fan-shaped fields of view sweep out all pertinent look directions as the spacecraft spins. Enhancements in the SWEPAM instruments from their original forms as Ulysses spare instruments include (1) a factor of 16 increase in the accumulation interval (and hence sensitivity) for high energy, halo electrons; (2) halving of the effective ion-detecting CEM spacing from ∼5° on Ulysses to ∼2.5° for ACE; and (3) the inclusion of a 20° conical swath of enhanced sensitivity coverage in order to measure suprathermal ions outside of the solar wind beam. New control electronics and programming provide for 64-s resolution of the full electron and ion distribution functions and cull out a subset of these observations for continuous real-time telemetry for space weather purposes.

1,025 citations

Journal ArticleDOI
21 Aug 2013-ACS Nano
TL;DR: It is demonstrated theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light.
Abstract: Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppresse...

1,021 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514